
Leakage Resilient Public Key
Authentication for Embedded Devices

Andrew Xia
Massachusetts Institute of

Technology
axia@mit.edu

Chiraag Juvekar
Massachusetts Institute of

Technology
chiraag@mit.edu

Anantha
Chandrakasan

Massachusetts Institute of
Technology

anantha@mtl.mit.edu

ABSTRACT
Having an effective and convenient authentication sys-
tem is necessary for the future development and in-
creased usage of devices in the Internet of Things. This
paper presents the implementation of a pairings-based,
public key leakage resilient authentication system to
improve upon current authentication schemes. We have
developed a pairings library in C, and we have imple-
mented software in RISCV assembly that successfully
implements such authentication scheme on a FPGA,
demonstrating the feasibility and efficiency of such prim-
itive.

1 INTRODUCTION
With the increased number of connected devices (sen-
sors, fitness bands, etc), it has become very important
to design a authentication platform to allow devices to
confirm the authenticity of the other party. Being able to
effectively verify the other party can help prevent fraud.
An application of using a secure authentication platform
is, for example, scanning an item at a supermarket. The
user will scan an item, and the item will send a signed
message using a key to the user. This signed message
will be verified to confirm whether the item is authentic
or a fraud.

To define the problem that we are investigating more
formally, we have two parties that are interacting with
each other. The first party is the prover, which attempts
to prove its identity to another party, the verifier. By fol-
lowing an authentication protocol, the prover and verifier
will interact via a series of messages, and at the end the
verifier will use the acquired information to determine
whether the prover’s identity is actually as it claims. In
the example above, the prover can be thought of as an
item in a supermarket, and the verifier is the user with
a smartphone, attempting to confirm that her purchase

will be of a genuine item. The detailed explanation of
our authentication protocol will be explained in section
3.3.

If our key on the prover is fixed, then side channel
attacks in the form of correlation power analysis (CPA)
and differential power analysis (DPA) can effectively
uncover our private key and render our device insecure
(see Figure 1) [4]. For example, by examining the power
differences in computing 0s and 1s, one can gain in-
formation on the signed message. Timing attacks can
similarly determine the logical operations that are com-
puted by a processor if different inputs take different
amounts of time through, for example, branches in the
assembly instruction. If we design computations that
have the same power consumption across all inputs, we
can prevent side channel attacks and help achieve leak-
age resiliency. Previous work on developing a leakage
resilient authentication scheme; however such scheme
uses a symmetric key scheme that achieves leakage re-
siliency by updating the key periodically using a pseudo
random number generator [10].

However, leakage resiliency is not the only feature
we desire in an authentication scheme. With a symmet-
ric key scheme, the key used by the device to sign a
message is the same as the key that the user needs to ver-
ify the device. However, the verifier cannot have direct
knowledge of this key —otherwise the verifier imper-
sonate the prover fraudulent activity by pretending to
be the device and signing messages. When the prover
sends its signed message to the user, the verifier must
contact a secure third party database that knows the key.
The database will then verify the device and return the
result of the verification to the user. Using a third party
database provides extra overhead in the authentication
scheme that is not desired.

By using a public key scheme, the database contain-
ing all public keys would no longer need to be secure.



Figure 1: Problems with Side Channel Attacks could
potentially compromise our authentication key

Under such a scheme, the prover uses a secret key sk to
sign messages, while the verifier uses a public key pk,
available to all, to verify the message. However, pub-
lic key schemes are not necessarily leakage resilient. If
the secret key remains fixed, over time there are side
channel attacks to uncover the secret key.

In this paper, we will detail the implementation of a
public key and leakage resilient authentication scheme.
Section 2 will detail previous work on authentication
schemes that are only public key or only leakage re-
silient, and show how this project builds on the previ-
ous work. To create a leakage resilient and public key
scheme, we will use a pairings-based elliptic curve struc-
ture, and section 3 will describe pairings and our three
phase authentication protocol. Section 4 will describe
our implementation of the pairints library and pairings-
based protocols written in Python, C, and for running on
a FPGA. Section 5 will show our implementation results.
Finally, section 6 will describe areas of future work for
this project.

2 RELATED WORK
Currently, the Energy Efficient Circuits & Systems Group
at MIT has designed a leakage resilient symmetric key
protocol[10]. The design of this authentication protocol
uses a Keccak-f[400] permutation to create a pseudo-
random number generator (PRNG) that uses a seed
agreed upon by both the verifier and the prover. However,
because this authentication protocol uses a symmetric
key for signing and verifying, we must use a third party
database containing all of the keys. This database would
require additional security constraints, which adds fur-
ther vulnerabilities and inefficiencies for practical use
cases.

Brakerski, Kalai, Katz, and Vaikuntanathan present a
leakage resilient public key encryption scheme in this
paper [4]. The idea is to periodically “update" the secret
key sk to a new randomized secret key sk ′ which can
still be decrypted by a non-mutating public key pk . The
private key update process, along with other operations,
have been proven to be leakage resilient. By performing
pairings operations in the exponent, obfuscation of the
operation is achieved. More details of the correctness of
this scheme will be shown in section 3.2.

Previous work on hardware accelerators have focused
on improving the multiply-and-add pairings operation
by optimizing hardware and software simultaneously
[14].

In order to implement the pairings function, a pair-
ings library which would include finite field and elliptic
curve operations must be implemented. A Python-based
pairings library has been previously implemented En-
ergy Efficient Circuits & Systems Group, which uses
optimization techniques described in [12]. The work of
this project includes implementing authentication and
encryption schemes based on this library. In addition
to verifying the correctness of the library in a desktop
environment, we have also ported the pairings library to
run on an embedded processor with memory constraints.

3 PRELIMINARIES
In this section, we present the mathematical background
related to our pairings-based authentication scheme in
section 3.2, and we describe our three phase authentica-
tion protocol in section 3.3.

3.1 Elliptic Curves
Pairings operations are based on elliptic curves, which is
a mathematical structure that has the following property:

Definition 3.1 (Elliptic Curve). An elliptic curve is a
plane curve that consists of points satisfying the Weier-
strass equation1

y2 = x3 + ax + b

One key property of elliptic curves is that all lines that
intersect two points on an elliptic curve will cross a third
point on the curve. We can define an addition on an
elliptic curve as follows: given two points x , and y, find
the third point z ′ that connects the line between x and y.
The point z = x + y is defined as the point z ′ reflected
1There are other representations of Elliptic Curves such as projective
coordinates



Figure 2: An example calculation on an Elliptic
Curve. The operation P ⊕ Q = R as the line through
P and Q intersects at −R.

across the x axis. See figure 2 for an example of a point
addition.

In Elliptic Curve Cryptography, the curve E is defined
on a finite field of order p. When operating on a finite
field, any point on the elliptic curve in the finite field
E/Fp can, through additions and doublings, generate
other points in the field. We can define the additive
identity as∞.

The discrete log problem in elliptic curves is hard.
More specifically, given a an elliptic curve defined over
a prime field, E/Fp , with n elements, the fastest attack
on the discrete log problem is the Pollard-Rho algorithm,
that takes O(

√
n) time. Thus, a 2n-bit elliptic curve will

have n-bit security. A 256-bit elliptic curve will have
128 bits of security. 2

In addition to an elliptic curve being defined on a
prime field Fp , we can define the twist curve of an elliptic
curve to be defined on the extension field Fp2 .

3.2 Pairings
We define the pairings function below as follows:

Definition 3.2 (Pairings). A pairing is a bilinear map

e : G1 ×G2 → GT

2On the other hand, subexponential algorithms, such as the index
calculus attack, exist on finite fields. To also achieve 128 bits of
security on a finite field, the order of the finite field would have to
be 3072 bits [1].

that satisfies bilinearity, non-degeneracy, and computabil-
ity.

We will now define the properties of bilinearity, non-
degeneracy, and computability.

Let P be the generator ofG1 and Q be the generator of
G2. Let the order of G1 be p1 and the order of G2 to be
p2. A mapping function is bilinear if, given any scalar
a ∈ Zp1 and b ∈ Zp2 , the map has the following property:

e(aP ,bQ) = e(P ,Q)ab = e(bP ,aQ)

In other words, scalars applied to either of the inputs
from the two pre-image groups can be alternated.

A mapping function is non-degenerate if for all A ∈
G1,A , P and B ∈ G2,B , Q , the pairing function
e(A,B) , e(P ,Q), where e(P ,Q) is the identity element
of the target group GT .

A mapping function is computable if there exists an
efficient algorithm to compute e. This property is mainly
for the practicality of using pairings to perform crypto-
graphic protocols. The Miller Loop was the first efficient
implementation of computing a pairings function [11].

For the purposes of our pairings library, we let G1
be the Elliptic Curve defined over the prime field E/Fp ,
and G1 be the twist curve defined on the extension field
E/Fp2 . We use Barreto-Naehrig curves, such that the
target group is an extension field Fp12 , such that the
embedding degree is defined as k = 12 [1]. Specifically,
a Barreto-Naehrig curve is an elliptic curve E over a
finite field Fp with the elliptic curve having order r =
#E/Fp . Furthermore, p and r are both prime, define as

p = 36u4 + 36u3 + 24u2 + 6u + 1

r = 36u4 + 36u3 + 18u2 + 6u + 1
for some u ∈ Z. Our implementation uses u = −(262 +
255 + 1). Our finite field order p is approximately 256
bits, giving the elliptic curve a security level of approx-
imately 128 bits. Similarly, the target group is a multi-
plicative group of 3072-bits, which according to NIST
recommendations is also at the 128-bit security level
[1]. The pairings function that we use in our library is
the Optimal Ate pairing, which maps elements from the
elliptic curve group and the twist curve group to the
multiplicative group, e(E/Fp ,E/Fp2) → Fp12 .

In the the leakage resilient public key scheme[4], the
pairing is used in the decryption process. The scheme
is described as follows: our public key is a series of
elements in group дA, where A is a length l vector. Our
secret key is дY , where Y is a length l vector and each



column of Y is in the kernel of A. We can encrypt a mes-
sage m by mapping each bit mi of m to дv

T
. If mi is 0,

then we set vT to a linear combination of rows in A, and
ifmi is 1 then we set vT to be a random vector. As our
encryption of a single bit is in the form дv

T
, and our se-

cret key is дY , we use pairings to perform decryption, in
which e(дv

T
,дY ) = e(д,д)v

TY . If e(д,д)v
TY = e(д,д)0

then return 0, otherwise return 1.
While this decryption may seem unnecessarily compli-

cated, the advantage of using pairings lies in the ability
to update our secret key without leakage. We update дY

by selecting a random scalar r , and updating the secret
key to sk ′ = дYr in a leakge resilient process [4].

Work has been done on implementing the scheme
described above, but such scheme requires the number
of pairings computations to be asymptotic to the security
level [4]. We will look into implementing a leakage
resilient public key encryption scheme that requires a
constant number of pairings operations.

Computing a pairing is about 4-6 times more expen-
sive than doing scalar multiplication operations in the
original elliptic curve [9]. For this project, we first imple-
mented the pairings library and authentication scheme
on a RISCV FPGA microcontroller to benchmark our
performance. Future work for this project could include
developing a hardware accelerator to reduce the compu-
tation overhead of a pairings operation. Implementation
of the pairings-based library can be done in Python on
a computer, on C for the RISC-V processor, and can be
built in hardware through BlueSpec Verilog.

3.3 Leakage Resilient, Public Key Primitive
In our authentication scheme, devised by Juvekar and
Kalai (paper to appear), we have a 3 step authentication
system, as shown in figure 3. The authentication scheme
composes of 3 messages sent between the prover and
the verifier.

We can define д1 as the generator for the elliptic curve
defined over Fp , and д2 to be the generator for the twist
curve defined over Fp2 . For the purposes of notation,
let capital letter variables S,A,U represent length-three
vectors, and lower case letters and greek letters be a
single element.

Before sending the messages, the prover first needs to
set up a key generation. The prover selects length-three
vectors S,A with each each element in the vector as a
random element in Zp such that S ·A = 0. We define the
vector S as the secret key and the vector A as the private

key. The prover will also send the verifier the public key
A before beginning the authentication protocol.

The authentication protocol is described below:

(1) Commitment. The prover generates a random
α ∈ Zp and length-three vector U with each
element in U as a random element in Zp . The
prover first sends a commitment message con-
sisting of дα1 on the elliptic curve and дU2 as three
elements on the twist curve to the verifier.

(2) Challenge. The verifier generates a random α ′ ∈
Zp and sends it to the prover.

(3) Response. The prover now computes hγ1 = (д
u
1 ·

дS1 )
α+α ′, which is a length-three vector on the

elliptic curve. The prover also computes hA1 =
(дA1 )

α+α ′. The prover sends h
γ
1 and hA1 to the

verifier.

Once the verifier has received the information from
the response stage, it will now need to run a verify func-
tion to accept or reject the prover’s identity. The verifier
first computes h1 = дα+α

′

1 . The verifier will then confirm
that the following three properties hold, for the optimal
Ate pairing e(E/Fp ,E/Fp2) → Fp12 :

3∏
i=1

e((hA1 )i , (д
U
2 )i ) =

3∏
i=1

e((h
γ
1 )i , (д

A
2 )i )

For i = 1,2,3: e(h1, (дU2 )i ) , e((h
γ
1 )i ,д2)

3∏
i=1

e((hA1 )i ,д2) =
3∏
i=1

e(h1, (д
A
2 )i )

If all three proprties hold, then the verifier knows that
the prover is authentic. If any of the three properties do
not hold, then the verifier can reject the prover’s claim
of authenticity. In this scheme, there are eighteen total
pairings operations computed on the verifier’s side, and
no pairings computed on the prover’s side.

We can see that this scheme is public key because
the secret key here is the vector S and the public key is
vector A.
S is updated periodically using a pseudo-random ran-

dom key generation, similar to the one in [10]. However,
for every update of S , the same public key A can still
verify the private key. The updating of the private-public
key is done in a leakage-resilient manner, and so this
three-phase authentication protocol is also leakage re-
silient.



Figure 3: The three phase authentication protocol. The secret key S is periodically updated. Keygen is run
before the 3 phase (and verification) protocol. Keygen provides public key A for the verifier. 18 pairings are
computed by the verifier to verify the prover’s identity.

3.4 Other Applications
In addition to computing our three-phase authentication
protocol by using pairings, other cryptographic primi-
tives can be implemented based on pairings. One appli-
cation for pairings is the construction of short signatures.
Most discrete logarithm signature schemes such as the
ElGamal signature scheme are composed of a pair of
integers within a group Zp [7]. However, Boneh, Lynn,
and Shacham (BLS) proposed the first signature scheme
such that signatures only use a single integer within a
group [2].

Another application for pairings lies in Identity-Based
Encryption (IBE). In standard public key cryptography,
the public key and the private key associated with a user
may be a random string of bits that may not be related in
any way to the user. However, in IBE we can use unique
characteristics of the user, such as her email address or
any other unique feature, to create a public-private key
pair. Boneh and Franklin were the first to implement an

Identity-Based Encryption protocol through the use of
pairings [3].

4 IMPLEMENTATION
In this section, we will discuss our implementation of
the pairings library. In order to implement the pairings
function, we would need to have a library capable of
computing the Miller loop to calculate a pairing. For the
Miller Loop to function, we would also need to write
libraries for Elliptic Curves defined on Fp and also Fp2 ,
while the output of the pairing function would be an
element in Fp12 . We can build operations in Fp12 through
Fp , Fp2 , and Fp12 , with Fp6 functions.

Operations in each finite field include addition, sub-
traction, inversion, negation, multiplication, and scalar
multiplication. Operations on the elliptic curve include
point addition and point doubling, as well as scalar multi-
plication. The pairings function is an optimal Ate pairing
that composes of computing the Miller Loop and the
Final Exponentiation on two inputs, an element in the
elliptic curve and one on the twist curve [6].



Figure 4: A diagram of our pairings library, show-
ing the dependencies of the mathematical structures
[14]

Both the Python and the C library implementations
are written using the architecture described in figure 4.

4.1 Python Implementation
Building upon previous work, a pairings library in Python
was previously written in the lab. On top of this library,
the Boneh-Franklin Identity Based Encryption scheme
was implemented and verified for correctness, showing
the correctness of encryption on the library [3]. In addi-
tion, we also implemented the BLS Signature Scheme,
as a demonstration that an authentication scheme could
be done [2].

Work was also done to implement the leakage resilient,
public key authentication scheme as devised by Juvekar
and Kalai, as a proof of concept of correctness. This
authentication scheme was shown to work on a desktop
setting. However, because we eventually want to deploy
the authentication scheme in an embedded environment,
the next step would be to port the software to be exe-
cutable on a RISCV processor implemented on a FPGA.
We can achieve this by porting the Python library to C
and compiling the library to a RISCV instruction set.

4.2 C Implementation
Because our application target is an embedded device,
hardware constraints dictate that our memory consump-
tion and energy consumption must be low. The C pro-
gramming language does not natively support integers
larger than 32 bits, while our curve uses numbers on the
order of 256 bits. We initially decided to use the GMP
library for our implementation of big integers [8]. When
the Python Library was initially ported over to C, the
memory consumed was too large; memory leakage was
causing the whole program to run using over 65MB on
the heap. As our prime p is on the order of 256 bits, we

wanted a target of memory consumption on the order
of Kilobytes. We used Valgrind, which is a program-
ming tool for memory debugging, leak detection, and
profiling, to determing where to optimize our pairings
library.

First, the codebase was rewritten such that the big
integers stored in GMP would not leak memory. Af-
ter this stage, the total memory allocated on the heap
was reduced to 36MB, while the maximum live heap
usage was at 20KB. Another aspect of optimization in
the library was the elimination of using Montgomery
numbers for the pairings library. We were also able to
eliminate the usage of certain constant parameters pre-
viously used in the Python library. In addition, because
the hardware accelerator that we were to use for the
pairings computation did not have a divider, functions
in the Python library that had used division had to be
rewritten. Specifically, the inversion function for finite
field elements was previously written using the extended
Euclidean algorithm. This fuction was rewritten to use
the extended binary Euclidean algorithm instead, which
uses right and left shifts to replace the more costly divi-
sion function. Memory was eventually reduced down to
10MB of total memory allocation, with a maximum live
heap usage of approximately 11.7KB.

However, 10MB of total memory allocation would
still be way too large for running the compiled RISCV
code on an embedded processor. Our target memory
constraints for the 32-bit embedded processor involved
64KB of random access memory, and also 64KB of
instruction set memory for the binary executable. The
GMP library implementation of bigInt stores the num-
bers on the heap instead of the stack. In a heap, the dy-
namic memory allocator allocates memory at an address
when an object is stored in memory. Following this, the
allocator’s next memory allocation index is incremented.
When objects are cleared in the code, the dynamic mem-
ory allocator will not decrement the location for the next
heap allocation.

Using a heap prevents the dynamic memory allocator
of our embedded processor to function correctly once
we exhausted all onboard memory. For example, we can
create bigInt a, for which the dynamic memory alloca-
tor will assign a hypothetically to memory address 0x8.
Now, if we create bigInt b and c, the dynamic memory
allocator will assign b to memory address 0xB and c to
0x10. If we are done with using a, the dynamic memory
allocator will clear a off the heap, but when we create d ,



it will not be inserted at memory address 0x8, but instead
at the dynamic memory allocator’s incremented location
of 0x14. We see that the amount of memory remaining
is directly related to the number of computations we
run, rather than the maximum live memory consumption
of the computations, which will eventually cause our
dynamic memory allocator to run out of memory.

Our options to reduce this total memory allocation
would be to either a) rewrite the memory allocator to
more efficiently use memory on the heap, or b) rewrite
our bigInt library to store variables on the stack instead
of the heap. The latter option was chosen on the grounds
of modularity, such that we wanted to make sure our
code could run on other embedded environments with
other dynamic allocators. See figure 5 to see the de-
creased memory usage over time.

Thus, we built a custom bigInt library capable of sup-
porting addition, subtraction, multiplication, shifts, com-
parisons, and modulos. Since our prime is on the order
of 252 bits, by using eight 32-bit wide limbs for a total
of 256 bits, our bigInt library would be able to fit all
arithmetic operations. As negative numbers are used in
the binary extended Euclidean algorithm, each bigInt
structure is in a two’s complement, big endian form.
There are certain cases when the extended Euclidean
algorithm requires 256 positive bits when computing the
inverse on 252 bit finite field, and in this case having a
leading 1 in the largest bit can represent a large positive
instead of a large negative number.

4.3 Embedded Processor Implementation
In this section, we detail how our authentication scheme
was implemented on hardware.

By using a custom-written big integer library, we were
able to reduce the maximum allocate stack usage to
10.7KB for a single pairing, which is well under our
physical limitation of 64KB.

We compiled our code into a RISCV instruction set
using the RISCV gcc compiler. We could simulate the
RISCV environment on a intel x86 processor using the
spike RISCV architectural simulator [13].

While the memory usage after using the stack-based
bigInt library decreased the memory consumption such
that the pairings library could be run on an embedded
processor, the cycle count of running the pairings opera-
tion could be further optimized. To achieve this, inline
assembly code was added to the C code in the pairings
library. For example, in the addition operation of two

bigInt integers, if there is a overflow in a limbwise addi-
tion the carry bit would be stored in the carry flag. As
we are iterating through limbs to compute a addition
operation, the C code without inline assembly would
not know to look for the carry flag. By writing inline
assembly code we would be able to save cycles in re-
computing the carry flag. Other optimizations by writing
inline assembly have also contributed to the decreased
runtime of the pairings function.

Further work in the embedded processor environment
would include testing the code on the lab’s previously
developed finite field hardware accelerator. We would
also hope to develop a pairings hardware accelerator
such that the computation time and energy consumption
could be further decreased.

5 RESULTS
The main contribution of this work is in the memory
optimization of the pairings library, and the successful
demonstration of the implementation of the pairings
library in an embedded environment. We used a Barreto-
Naehrig curve such that the optimal Ate pairing could
be used.

We were also able to demonstrate the successful im-
plementation of BLS Signatures and Identity-Based En-
cryption (BF-IBE) by using our pairings library on the
Python implementation of the pairings library.

We were able to reduce the memory footprint of the
program from approximately 65MB to 10.7KB. We were
able to test a pairings function in an embedded environ-
ment, by compiling our pairings library in C to RISCV
assembly code, that could be run on a FPGA simulating
a RISCV processor.

6 CONCLUSION
Designing a leakage resilient public key authentication
scheme achieves more security and convenience over
previously implemented methods. While a symmetric
key scheme requires storing the verifying key in a secure
database, a public key scheme would not. By using a
pairings based encryption scheme, we can update the
secret key while being leakage resilient.

In terms of the future work, further optimization in
both the authentication protocol design and the imple-
mentation can be improved to achieve better perfor-
mance. Currently, the verifier needs to complete 18 pair-
ings in the authentication protocol. As pairings are 4-6
times more expensive in computation than elliptic curve



Figure 5: Reducing memory usage through rewrit-
ing the pairings based library. In the end, writ-
ing a bigInt library built on the stack instead of
the heap was necessary to reduce maximum mem-
ory consumption. We were able to reduce memory
consumption (maximum live / total allocated) from
16MB/65MB using a heap-based bigInt approach us-
ing GMP to just 10.7KB/10.7KB of memory with
our bigInt library built on the stack

scalar multiplications, improving the protocol by reduc-
ing the number of pairings would increase performance.
To further improve the computation speed of the au-
thentication protocol, we are also hoping to develop
a hardware accelerator for computing pairings in the
future.

This scheme will allow for future Internet of Things
devices to achieve better security by having authen-
tication scheme with both a public key and leakage-
resiliency.

REFERENCES
[1] Barreto, P. S., & Naehrig, M. (2006). Pairing-Friendly

Elliptic Curves of Prime Order. Selected Areas in Cryp-
tography Lecture Notes in Computer Science, 319-331.
doi:10.1007/11693383_22

[2] Boneh, D., Lynn, B., & Shacham, H. (2001). Short Signa-
tures from the Weil Pairing. Advances in Cryptology - ASI-
ACRYPT 2001 Lecture Notes in Computer Science, 514-532.
doi:10.1007/3-540-45682-1_30

[3] Boneh, D. & Franklin, M., “Identity-based encryption from the
Weil pairing", Advances in Cryptology -CRYPTO 2001, Lec-
ture Notes in Computer Science, 2139 (2001), 213âĂŞ229.
Full version: SIAM Journal on Computing, 32 (2003),
586âĂŞ615.

[4] Brakerski, Zvika, Yael Tauman Kalai, Jonathan Katz, and
Vinod Vaikuntanathan. “Overcoming the Hole in the Bucket:
Public-Key Cryptography Resilient to Continual Memory

Leakage." 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science (2010): n. pag. Web.

[5] Costello, C. (n.d.). Pairings for Be-
ginners. Retrieved June 6, 2016, from
http://www.craigcostello.com.au/pairings/PairingsForBeginners.pdf

[6] Duquesne, S., N. E. Mrabet, S. Haloui, & F. Rondepierre,
“Choosing and generating parameters for low level pairing
implementation on BN curves", Cryptology ePrint Archive,
Report 2015/1212, (2015).

[7] ElGamal, T., “A public key cryptosystem and a signature
scheme based on discrete logarithms", IEEE Transactions on
Information Theory, 31 (1985), 469âĂŞ472.

[8] Granlund, Torbjörn, et al., "GNU Multiple Precision
Arithmetic Library 4.1.2", (December 2002), Web, from
https://gmplib.org/

[9] Guillevic, A., & Vergnaud, D. (2015). Algorithms for Out-
sourcing Pairing Computation. Smart Card Research and
Advanced Applications Lecture Notes in Computer Science,
193-211. doi:10.1007/978-3-319-16763-3_12

[10] Juvekar, Chiraag S., Hyung-Min Lee, Joyce Kwong, and Anan-
tha P. Chandrakasan. "A Keccak-based Wireless Authentica-
tion Tag with Per-query Key Update and Power-glitch Attack
Countermeasures." 2016 IEEE International Solid-State Cir-
cuits Conference (ISSCC) (2016): 290-92. Web.

[11] Miller, V. S., “The Weil pairing, and its efficient calculation",
Journal of Cryptology, 17 (2004), 235âĂŞ261.

[12] Naehrig, M., Niederhagen, R., & Schwabe, P. (2010). New
Software Speed Records for Cryptographic Pairings. Lecture
Notes in Computer Science Progress in Cryptology - LATIN-
CRYPT 2010, 109-123. doi:10.1007/978-3-642-14712-8_7

[13] Nguyen, Q., et. al, RISCV Tools (GNU Toolchain,
ISA Simulator, Tests) (2014), GitHub repository,
https://github.com/riscv/riscv-tools.

[14] Unterluggauer, T., & Wenger, E. (2014). Efficient Pairings and
ECC for Embedded Systems. Lecture Notes in Computer Sci-
ence Cryptographic Hardware and Embedded Systems. CHES
2014, 298-315. doi:10.1007/978-3-662-44709-3_17


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Elliptic Curves
	3.2 Pairings
	3.3 Leakage Resilient, Public Key Primitive
	3.4 Other Applications

	4 Implementation
	4.1 Python Implementation
	4.2 C Implementation
	4.3 Embedded Processor Implementation

	5 Results
	6 Conclusion
	References

