
ORGanized Interactions: a tree-based collaborative editor

Andrew Xia ∗

Massachusetts Institute of
Technology

axia@mit.edu

Slava Kim ∗

Massachusetts Institute of
Technology

imslavko@mit.edu

Kevin Lu
∗

Massachusetts Institute of
Technology

kezilu@mit.edu

ABSTRACT
In this paper, we discuss our implementation of Operational
Transforms using a tree-based structure. We have success-
fully implemented a command line interface text editor, such
that multiple clients can collaborate on a single document
and attain eventual consistency in the document through
the use of operational transforms.

1. INTRODUCTION
Collaborative editors like Etherpad tend to implement

Operational Transforms to allow multiple users make con-
current changes to data. So far people have been successful
in making flat-text editing collaborative but the space of the
hierarchical text editing is yet to see a collaborative version.
In this project, we first build a flat collaborative editor that
uses operational transforms. Building on top of this flat
structure, we also explore a version of a collaborative editor
with a tree-like structure containing text.

In our operational transform system, allow operations for
work on objects forming a tree shape including: editing
fields, appending nodes, deleting nodes, reordering nodes on
the same level, moving node to a different subtree. We would
draft inspiration from OT-related papers and ShareDB im-
plementation.

Working on trees as opposed to text is interesting, because
structured text tends to be represented as a tree of data (e.g.
HTML DOM).

In this project, we first build a collaborative editing sys-
tem that would only allow text to be inside the shared doc-
ument, much like etherpad. Following this, we would also
like to incorporate a more complex tree-like structure to the
text, which would allow for editing nodes. Future work on
further optimizing our collaborative editor include exploring
ideas such as sharding the data for better scaling, or using
a distributed consensus algorithm such as Raft to ensure
fault-tolerance on the server side.

∗Department Electrical Engineering and Computer Science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

2. RELATED WORK
Many collaborative text editors exist, but we were most

influenced by Google Wave [1]. Google Wave takes the 1995
Jupiter paper [2] and implements a variety of performance
optimizations. We have not implemented some but not all
of the ideas from the Google Wave whitepaper.

Literature such as [3] and [4] suggest methods to mod-
ify Operational Transforms to include tree-like primitives.
However, both papers have certain drawbacks (for example,
does not support node splitting). Thus, after some consider-
ation, we chose to more closely follow the Wave implemen-
tation.

3. COMMAND LINE INTERFACE
Since every lab of the class used Golang as the primary

implementation language, we decided to stick to Golang and
write our editor entirely in the same language. The benefit
we gain is the ease of code sharing between the client and the
server implementations. Also it was the language everyone
on our team knew decently well after the semester of use for
this class.

We implemented a simple text editor basing our imple-
mentation on simple pattern of redrawing the screen after
each user or network event. We use Golang bindings for
working with terminal modes and capturing user input that
uses curses under the hood.

4. OPERATIONAL TRANSFORMS
Consider the situation where Alice and Bob are editing

a shared document with the text, “1234”. Alice sends the
operation “Insert A at index 1” to the server and applies it
locally, while Bob does the same with the operation “Insert
B at index 3.” The server then sends Alice’s operation to
Bob and vice versa. If Alice and Bob just blindly apply
these operations, Alice will get the string “1A2B34” while
Bob will get the string “1A23B4.”

The solution for this is Operational Transforms, which
enforces eventual consistency. When the client or server re-
ceives a message from the server that could potentially cause
a conflict, we would modify it first. This is done through
a function named Xform, which is central to operational
transforms. Xform takes as input two operations c and s,
and returns two operations c′ and s′ such that performing
c followed by s′ results in the same state as performing s
followed by c′.

To make Xform concrete, consider figure 1, a typical OT
diagram. Each point represents a state of the document

https://github.com/share/sharedb


Figure 1: A simple Operational Transformation Ex-
ample

as seen by the client or server. The black lines represent
the local operations of a client, and the red lines represent
the operations of the server. The diagram is meant to be
read from top to bottom; lines slanting towards the bottom
left are changes initiated from the client, and lines slanting
towards the right are changes initiated from the server.

The client and server agree that at version 10 the docu-
ment contains the text “ca.” The client inserts ‘h’ at index
1 while the server inserts ‘t’ at position 2. This is a po-
tential conflict, so Xform(c, s) is called on c =ins(h, 1) and
s =ins(t, 2), and the pair returned is (c′, s′) =(ins(h, 1),
ins(t, 3)). Note that at version number 12, the states of the
client and server are both the string “chat,” but the opera-
tions that led them there are different.

Out implementation also includes version numbers and
logs on both the server and client side. For the the server,
the version number starts at 1. Each time the server receives
a operation from a client, the client may potentially trans-
forms the operation, writes the (potentially transformed)
operation to log, and increments its version by 1. For the
client, the version number is defined as the last server ver-
sion number where the server and client are known to be
consistent. Thus, consider the state 11:cha in figure 1; when
the client is in that state, its version number is still 10. Fur-
thermore, the client also logs all of its changes in its own
log.

Other implementations such as [2] use two version num-
bers in its operational transforms. The first version num-
ber represents the client’s version number, while the second
number represents the other party (server)’s version number
Instead, figure 1 would have versions 10, 10 for “ca”, versions
11, 10 for “cha” on the client side (since the client is one op-
eration ahead of the server), versions 10, 11 for “cat” on the
server side (since the server is one operation ahead of the
client), and version 11, 11 for “chat” when both the client
and the server have converged again. However, we realized
that having version numbers for each client and server added
unnecessary complexity, as we defined our server to be the
always-correct state, so our implementation only uses a sin-
gle global version number.

4.1 Op.Op
op.Op is our data structure for all operations; see table

1 for all of its fields. We support insert character, delete

Figure 2: When two deletions have been recorded
as operations, the transformation coud potentially
be a NoOp. We do not want to end up at state no
at version 12

Table 1: Operation Structure
Line Type Description
OpType string Type of Operation
Position int Location of Operation
Version int The client version
VersionS int The server version
Uid int64 Unique ID of the client
Payload string Value associated with the operation
Path string Path of the operated file

character, and no-op. Resolving transformations for most
pairs of operations is pretty straightforward; we list some of
the more interesting ones here.

Multiple inserts are the same index: We need a way to
determine which insert comes first and which one comes sec-
ond. Since each operation has a Uid, we arbitrarily chose
that the operation with the smaller Uid goes first.

Two deletes at the same index: This means the client and
server are both trying to delete the same character. Thus,
the Xform of 2 deletes at the same index is (noOp, noOp).

4.2 XForm: transformations
In the function XForm we resolve all possible conflicts be-

tween three types of supported operations: ins, del and
move. Insert and delete commands operate on files with a
certain path and edit at a certain position. Move operations
just specify two paths, the operation is similar to UNIX’s
rename.

Inserts and deletes are resolved with correctly adjusting
the position of the operation.

In case of moves, the path is adjusted. If one file had a
path /foo/bar and there was an edit (ins, /foo/bar, 3,

text) but in between server received a move (move, /foo,

/qux), the edit would be transformed accordingly with the
path of the file containing the new name of the folder: (ins,
/qux/bar, 3, text).

5. CLIENT SIDE IMPLEMENTATION
Our goal in the design of the client is similar to the mo-

tivation of the Google Wave design. We want to make the
client compute as much as the operations as possible, while



lessening the workload on the server end.
The client communicates with the server through two RPC

calls, sendOp and pull, both of which will be described be-
low.

When we complete an operation, be it an insert or delete,
on the CLI, we can apply the operation to the client’s log
directly. The client’s log may diverge from the server’s logs,
but it should accurately reflect the sequence of operations
that is seen from the client’s perspective. Next, we add the
operation to a buffer on the client. The buffer is essentially a
first in first out queue, such that SendOp will look through
the buffer and send the first operation in the buffer. An
operation remains in the buffer until the sendOp RPC call
returns that the client is up to date with the server. If
the sendOp RPC call returns that the client is not up to
date, then the client will have to process the outstanding
operations that it will receive from the server, and only after
all of the operations have been processed and applied can the
originally operation sent by the client be cleared from the
buffer.

We maintain the following invariants:

• Every operation that the client sends must be an oper-
ation that is consistent with the last version at which
the client is in sync with the server.

• The version number of operations in the log differ by
exactly 1 for consecutive operations.

For the first point, in order to ensure that the server’s
workload is reduced, we allow only operation to be sent
to the server at a time. We can send an operation to the
server through an sendOp RPC call over a TCP/IP con-
nection. After sending the operation, if the server responds
with an acknowledgment that the client is in agreement with
the server, then the client can continue sending operations.
However, if the server responds that the client is not up to
date —that is, maybe a separate client has added operations
to the server and our client would need to process those logs
—then, the client cannot send operations to the server un-
til it has pulled the server’s outstanding logs, and computed
the proper operational transforms against the client’s buffer.

Figure 3 describes the scenario. Say at first that all clients
and the server are at an agreed version 10. Let us imagine
a scenario when the client 0 has completed two operations
A and B on it’s command line interface, while a separate
client 1 has also completed two operations C and D, and sent
them to the server. The server has processed and applied
the operations and incremented to version 12, so when the
server receives operation A from client 0 on version 0, it
will complete operation transforms, apply operation A′, and
increment to version 13. Client 0 will then know that it is
out of date, and receive operations A and B from the server.
At this point, the client will compute A′ and B′ against
operations C and D, which are stored in the client’s buffer,
and applies A′ and B′ to its log. Through the operation
transforms of A′ and B′, we will also have computed D′.
Only after applying A′ and B′ to the log, can we clear C
from the buffer, and then send D′ to the server.

However, figure 4 describes a more complicated scenario.
In this situation, by the time we have received the response
for OpC, the server has already applied Ops A, B, C, and
E. Thus, when processing OpA and OpB, we transform ev-
erything in the buffer as we have done previously and apply

Figure 3: In this scenario, the client and the server
have diverged by two operations. The light red is
the intermediate transformation done by the server
and grey is the intermediate operation done by the
client. We try to make the client do as much of the
operation transfoms as possible, such that the client
will send Op D’ to the server but it will record Op
D in its own logs.

OpA’ and OpB’ (the transformed versions of OpA and B)
locally. When we get to OpC’, which will have the same Uid
as the client. When the client receives a message with the
same Uid as itself, it must be a transformed version of its
own message. Thus, we pop the first element of the buffer
such that the buffer consists of only OpD. For the remainder
of the logs, we transform them as normal.

Due to RPC constraints in golang, only one way RPC calls
can exist. That is, while the client can send RPC calls to
the server, the server cannot send RPC calls to the client.
We attempted to bypass the issue at first by using third
party libraries such as RPC2 [5], but using these libraries
introduced further issues.

Thus, we implemented a pull functionality on the client
to act as a figurative “push” from the server’s end, in case
the server has outstanding logs for the client. In the client’s
“pull” function, it will periodically send an empty request
to the server, containing its version number. If the server’s
version number is ahead than the client, it will send the
client all the logs that it needs to catch up to the server and
achieve a consistent state. This pull RPC call can also be
accelerated in the case when a sendOp RPC call returns a
out of date situation, which would happen if the client is at-
tempting to send an operation but the server has previously
received other operations from other clients.

6. SERVER SIDE IMPLEMENTATION
On the server side, we maintain a server version number

as well as a version number for each client. When a message
is received from a client, the server sends that client all of
the logs from the server’s version onwards and updates its
own state. We define state of the string in the server to
be the correct string, such that if clients diverge from the
server’s string representation, it is up to the client to correct



Figure 4: Similar to figure 3, except the client re-
ceives a log containing a transformed version of one
of its own operations. When processing that log,
the client pops one element of its buffer and then
proceeds as normal.

itself.
Whenever a new client joins, we send that client a snap-

shot such that they are also up to date. Snapshots contain a
the state of our strings and the version number of the server,
but it does not include the logs of the server. For example,
if at version 10 the server is displaying string “hello” and
a new client joins, we can simply send “hello” and version
10 to the new client without having to include the previous
logs.

We keep a lock on the state whenever we do a modifica-
tion, so we do not get race conditions. If a server receives
a operation from the client such that the version number of
the operation is behind the current version number of the
server, then the server will apply the appropriate operational
transforms on the received operation. Note that the server
does not need to keep a buffer like the client, since the server
itself does not create any operations itself.

Similar to the client, the server also maintains a log record
that represents its path of operations to reach its current
state. For example in figure 3, the server’s logs follow the
red path and would contain Op A, Op B, the transformed
Op C’, and the transformed Op D’.

7. CONCLUSION
We have successfully implemented a collaborative text ed-

itor that includes basic text editing and snapshotting. We
also implemented the functionality for moving files concur-
rent with the edits in a tree-like file system but didn’t have
enough time to build and debug the appropriate user inter-
face for these operations. In terms of our future use, we are
considering the following:

Batching messages that are sent to the server. Google
Wave implements “compound operations,” which is one of
the main optimizations that allows it to scale to hundreds
of people. This would greatly improve performance.

Essentially implementing snapshotting. When a client
reaches a state that is known to be consistent with the server

at some state, it can discard all its logs. The server can dis-
card all logs before a version x if all clients have version
number greater or equal to x. This would prevent the log
from growing indefinitely.

8. REFERENCES
[1] Wang, Ma, Lassen, “Google Wave Operational

Transform”, July 2010.

[2] David A. Nichols, Pavel Curtis, Michael Dixon, and
John Lamping. 1995. High-latency, low-bandwidth
windowing in the Jupiter collaboration system. In
Proceedings of the 8th annual ACM symposium on User
interface and software technology (UIST ’95). ACM,
New York, NY, USA, 111-120.
DOI=http://dx.doi.org/10.1145/215585.215706

[3] C. Ignat, and M.C. Norrie: “Customizable collaborative
editor relying on treeOPT algorithm,” Proc. of the
European Conf. on Computer Supported Cooperative
Work, pp. 315 - 334, Sep. 2003.

[4] A. Davis, C. Sun and J. Lu: “Generalizing operational
transformation to the standard general markup
language,” Proc. of ACM Conf. on Computer Supported
Cooperative Work, pp. 58 - 67. Nov.16 - 22, 2002.

[5] Cenk Alti. RPC2: Bi-directional RPC in Go.
https://github.com/cenkalti/rpc2, Nov 2016. Accessed
May 2017.

Appendix
Our code can be accessed through this Github repository:
https://github.com/qandrew/6.824-fp

Acknowledgments
We would like to acknowledge Prof. M. Frans Kaashoek,
Prof. Robert Morris, and the 6.824 Distributed Systems
Teaching Assistants for their support in this project.

https://github.com/qandrew/6.824-fp

	Introduction
	Related Work
	Command Line Interface
	Operational Transforms
	Op.Op
	XForm: transformations

	Client Side Implementation
	Server Side Implementation
	Conclusion
	References

