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Abstract

In this thesis, we examine a variety of constructions based on secret sharing techniques
applied on lattice-based cryptographic primitives constructed from the learning with
erros (LWE) assumption. Using secret sharing techniques from [BGG+17], we show
how to construct paradigms of threshold multi-key fully homomorphic encryption
and predicate encryption. Through multi-key fully homomorphic encryption [MW16]
and threshold fully homomorphic encryption, we can construct a low-round multi
party computation (MPC) scheme with guaranteed output delivery, assuming hon-
est majority in the semi-honest and malicious settings. Applying the secret sharing
scheme on predicate encryption constructions from LWE [GVW15], we can obtain a
distributed predicate encryption scheme.
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Chapter 1

Introduction

The field of cryptography has evolved over time, starting from Diffie-Hellman Key

Exchange [DH76] and public key cryptography such as RSA [RSA78]. From the

original extension of symmetric key cryptography to public key cryptography, recent

development in the field has allowed for further flexibility of encryption protocols.

One such direction is that of fully homomorphic encryption (FHE) [GSW13], in

which an encryption protocol has the additional property such that computation can

be done on the encrypted data. Given the encryption of 𝑥 and encryption of 𝑦, de-

noted as 𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦) respectively, it is possible to add the encryptions such that

𝐷𝑒𝑐(𝑆𝑢𝑚(𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦))) = 𝑥 + 𝑦, and similarly compute the product of encryp-

tions such that 𝐷𝑒𝑐(𝑃𝑟𝑜𝑑(𝐸𝑛𝑐(𝑥), 𝐸𝑛𝑐(𝑦))) = 𝑥 * 𝑦. This allows for computation

of arbitrary circuits on the encrypted space, potentially allowing clients with low

memory or compute power to delegate their data to a server, allowing the server to

compute on their encrypted data, while having the server learn nothing about the

client’s data itself.

A recent extension of FHE is multi-key fully homomorphic encryption [MW16,

LTV13]. This is a distributed FHE scheme where parties are able to encrypt plain

text under their own (independently) generated ciphertexts, and yet still be able to

jointly compute on the ciphertexts from multiple parties. The decryption protocol in

multi-key FHE is a multi-party protocol where all parties’ secret keys must be used

for correctness and security of the scheme.
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Another such direction is that of function encryption (FE) [ABB10], which is a

more fine-grained approach to the ability do decrypt data. With the encryption of

𝑥, a party with the secret key 𝑠𝑘𝑓 associated with a function 𝑓 can only decrypt to

reveal 𝑓(𝑥) and learn nothing more about 𝑥. While it is not known how to construct

functional encryption from the learning with errors assumption, we know how to

construct a weaker notion of predicate encryption (PE), in which a ciphertext of 𝑥

has a set of attributes (𝜇) such that nothing is learned about (𝑥, 𝜇) unless if the a

corresponding secret key can decrypt the ciphertext.

Recent constructions of FHE and PE can be constructed by lattice-based assump-

tions, which have the positive feature of believed to be quantum-resistant.

Threshold cryptography [DF89] is the process of constructing a cryptographic

protocol in which certain algorithms in the protocol may be completed in a distributed

manner, instead of by a single party. We allow the property where we can split a

cryptographic secret into 𝑁 shares, storing each share on a different server, and

allowing any subset of 𝑡 servers to use the secret without ever re-constructing and

revealing the secret. An example of threshold cryptography may be for threshold

decryption, where we distribute the secret key of a public key encryption scheme

among 𝑁 parties. Any subset of 𝑡 parties may output partial decryptions such that

the decrypted plaintext can be reconstructed from the partial decryption.

In this thesis, we develop techniques to construct threshold cryptosystems for ex-

isting lattice-based fully homomorphic encryption and predicate encryption schemes.

For the FHE setting, we extend recent work in threshold FHE to the threshold

multi-key FHE setting. While existing multi-key FHE schemes require a 𝑁 -of-𝑁

threshold decryption process, through secret sharing the secret keys of the parties,

we can achieve a 𝑡-of-𝑁 threshold decryption protocol. We propose constructions

of multi-key FHE based on the Gentry-Sahai-Waters FHE construction [GSW13],

and also off of the NTRU FHE construction [LTV13] based off of ring lattices. The

tradeoffs of the GSW FHE scheme is such that a common public parameter is required

for the setting up public keys, though the decryption process requires a single round.

On the other hand, the NTRU FHE construction does not require public parameters

14



to set up the public keys for independent users, but a [two-round] MPC is required for

decryption. For more details, see section 3.1.2 and 3.1.4 for the FHE constructions

respectively.

For the Predicate Encryption setting, we extend work by [BGG+14, GVW15] to

build a threshold predicate encryption scheme. Modifying trapdoor generation algo-

rithms for lattices [MP12, BKP13], we can also construct a threshold key generation

algorithm, in which there no longer is a single master authority generating secret keys

𝑠𝑘𝑓 for particular functions.

Applications Fully homomorphic encryption and predicate encryption provide a lot

of flexibility in creating new protocols with security guarantees.

In one setting, imagine there are 𝑛 hospitals with a lot of sensitive data. This

data cannot be shared with the other hospitals, and researchers who may wish to

access the hospitals data are also constrained. Through multi-key threshold fully

homomorphic encryption, the each hospital 𝑖 can encrypt their data under their own

public key 𝐸𝑛𝑐(𝑝𝑘𝑖, 𝑥𝑖) and broadcast the encrypted data. In addition, the hospitals

can give secret shares of their secret key to the other hospitals (or a set of trusted

parties). Now, a researcher can process the encrypted data as he wishes, and when he

wishes to see the decrypted output of his function, when 𝑡 of the 𝑛 hospitals allow the

decryption –whether they are online, or accept that the computed function respects

privacy –then the researcher can see the output of the function.

In another setting, imagine that there is an investigation on credit card fraud

[GVW15]. By encrypting credit card transactions labeled with a set of attributes,

including the timestamp, costs, and zipcodes, it would be possible to issue decryption

keys where the transactions exceed a certain threshold, and originated from a par-

ticular range of zip codes. This in turns protects the privacy of transactions which

would not be considered “fradulent."
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1.1 Related Work

This work builds off of recent work on threshold FHE by Boneh et al [BGG+17].

Concurrent work on threshold multi-key FHE was done by Badrinarayanan et al

[BJMS18]. Multi-key FHE in a sense achieves 𝑁 -of-𝑁 threshold decryption [MW16,

LTV13, PS16, BP16], however generalizing the scheme to a 𝑡-of-𝑁 threshold setting

is nontrivial and requires secret sharing techniques from [BGG+17]. Gordon et al also

mention the use of a threshold FHE to create a three round multi-party computa-

tion scheme with guaranteed output delivery, however without specifying the specific

underlying secret sharing scheme used [GLS15].

Bendlin et al [BKP13] also present a threshold Gaussian sampling protocol. How-

ever the limitation of this system is that only a bounded number of online non-

interactive decentralized Gaussian samplings can be done before an offline interac-

tive step must be performed. On the line of constructing lattice-based threshold

cryptosystems, distributed PRFs [BLMR15] have also been constructed.

1.2 Outline of Thesis

In chapter 2, we detail preliminary concepts such as lattices, gaussian trapdoors, and

secret sharing. In chapter 3, we present the definitions for fully homomorphic encryp-

tion, threshold FHE, and multi-key FHE. In chapter 4, we present our extensions:

constructions of decentralized FHE, threshold multi-key FHE, modifications of the

NTRU FHE scheme, and applications to MPC based on threshold multi-key FHE.

In chapter 5, we present constructions of predicate encryption and modifications to

allow threshold decryption protocols. Finally, in chapter 6, we detail potential future

directions of this work.
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Chapter 2

Preliminaries

In this chapter, we detail the preliminary concepts for this thesis, which include

lattices, Gaussian Trapdoors for lattices, and secret sharing.

We say a function 𝑓(𝑛) is negligible if it is 𝑂(𝑛−𝑐) for all 𝑐 > 0 and we use

negl(𝑛) to denote a negligible function of 𝑛. We say that an event occurs with

overwhelming probability if its probability is 1−negl(𝑛). We also define computational

indistinguishability below:

Definition 1 (Computational Indistinguishability). We say that two distributions

𝑋, 𝑌 over {0, 1}𝑛 are computationally indistinguishable if for every PPT algorithm

𝐴, there exists a negligible function 𝜖(𝑛) such that the following holds:

|Pr[𝐴(𝑋𝑛) = 1]− Pr[𝐴(𝑌𝑛) = 1]| ≤ 𝜖(𝑛)

2.1 Lattices

A lattice Λ is a discrete additive subgroup of R𝑚 for some 𝑚 ≥ 0. For this thesis,

we consider, full-rank integer lattices, which are additive subgroups of Z𝑚 with finite

index. Recent cryptographic protocols use a particular family of q-ary integer lattices,

which contain 𝑞Z𝑚 as a sublattice for some integer 𝑞, which will be bounded by

𝑝𝑜𝑙𝑦(𝑛). For positive integers 𝑛, 𝑞, let A ∈ Z𝑛×𝑚
𝑞 be arbitrary, and define a full-rank

𝑚-dimensional 𝑞-ary lattice as

17



Λ⊥(A) = {𝑧 ∈ Z𝑚 : Az = 0 mod 𝑞}

For any u ∈ Z𝑛
𝑞 with an integral solution x ∈ Z𝑚 such that Ax = u mod 𝑞, we

define the coset (or shifted lattice) as

Λ⊥
𝑢 (A) = Λ⊥(A) + x = {𝑧 ∈ Z𝑚 : Az = u mod 𝑞}

2.1.1 Ideal Lattices

In addition to constructing lattices over R𝑛, lattices can also be constructed over

rings.

A ring 𝑅 is defined as Z[𝑥]/⟨𝜑(𝑥)⟩ for some degree 𝑛 polynomial 𝜑(𝑥) ∈ Z[𝑥]. For

the context of this thesis and for the NTRU encryption scheme, we let 𝜑(𝑥) = 𝑥𝑛 + 1

where 𝑛 is a power of 2. We define 𝑅𝑞
def
= 𝑅/𝑞𝑅 for some prime integer 𝑞. An element

in 𝑅 (or 𝑅𝑞) can be viewed as a degree (𝑛 − 1) polynomial over Z (or Z𝑞). We can

represent each element as a vector of its 𝑛 coefficients.

2.2 Gaussian Trapdoors

This subsection details some trapdoor generators and algorithms for lattices.

Given a lattice Λ ⊂ R𝑚, let 𝑐 ∈ R𝑚 and let Σ > 0 be a positive definite matrix.

The discrete Gaussian distribution 𝐷Λ+𝑐,
√
Σ is simply the Gaussian distribution 𝐷√

Σ

is distributed such that the support is over coset Λ+𝑐. In other words, for all 𝑥 ∈ Λ+𝑐

𝐷Λ+𝑐,
√
Σ(𝑥) =

𝜌√Σ(𝑥)

𝜌√Σ(Λ + 𝑐)
∝ 𝜌√Σ(𝑥)

A discrete Gaussian is spherical with parameter 𝑠 > 0 if the covariance matrix is

𝑠2I.

The binary decomposition algorithm, denoted BD(𝐴) → 𝑅, or denoted 𝐺−1()

otherwise, is a deterministic algorithm that takes a matrix 𝐴 ∈ Z𝑛×𝑚
𝑞 and outputs

a matrix 𝑅 ∈ Z𝑚×𝑚
𝑞 where 𝑅 is a binary matrix such that each element 𝑎 ∈ Z𝑞

18



that belongs to 𝐴 gets transformed to a column vector 𝑟 ∈ Z⌈log 𝑞⌉
𝑞 . 𝑟 is defined as

𝑟 = [𝑎0, . . . 𝑎⌈log 𝑞⌉−1]
𝑇 where

∑︀
𝑖 𝑎𝑖2

𝑖 = 𝑎.

Lemma 2 ([BGG+14]). Let 𝑛,𝑚, 𝑞 > 0 be integers with 𝑞 prime. Then, there exists

PPT algorithms with the properties below:

∙ TrapGen(1n, 1m, q) → (𝐴, 𝑇𝐴). The trapdoor generation algorithm is a random-

ized algorithm such that when given 𝑚 = Θ(𝑛 log 𝑞), outputs a full-rank matrix

𝐴 ∈ Z𝑛×𝑚
𝑞 and basis 𝑇𝐴 ∈ Z𝑚×𝑚 for Λ⊥

𝑞 (𝐴) such that 𝐴 is negl(𝑛)-close to

uniform and the Gram-Schmidt orthogonalization of 𝑇𝐴 is 𝑂(
√
𝑛 log 𝑞) with all

but negligible probability in 𝑛.

∙ ExtendRight(A,TA,B)→ 𝑇(𝐴|𝐵) [MP12]. The extend right algorithm is a deter-

ministic algorithm where, given full rank matrices 𝐴,𝐵 and trapdoor 𝑇𝐴, outputs

a basis 𝑇(𝐴|𝐵) of Λ⊥
𝑞 (𝐴|𝐵)

∙ ExtendLeft(A,G,TG, S) → 𝑇𝐻 where 𝐻 = (𝐴|𝐺 + 𝐴𝑆) [ABB10]. The ex-

tend left algorithm is a deterministic algorithm where, given full-rank matrices

𝐴,𝐺 ∈ Z𝑛×𝑚
𝑞 and a basis 𝑇𝐺 for Λ⊥

𝑞 (𝐺), outputs a basis 𝑇𝐻 of Λ⊥
𝑞 (𝐻) such that

||𝑇𝐻 ||𝐺𝑆 ≤ ||𝑇𝐺||𝐺𝑆 · (1 + ||𝑆||2).

∙ For 𝑚 = 𝑛⌈log 𝑞⌉, there is a fixed full-rank matrix 𝐺 ∈ Z𝑛×𝑚
𝑞 such that the

lattice Λ⊥
𝑞 (𝐺) has a publicly known basis 𝑇𝐺 ∈ Z𝑚×𝑚 with ||𝑇𝐺||𝐺𝑆 ≤

√
5. The

gadget matrix 𝐺 is defined via a gadget vector 𝑔 = (1, 2, 4, . . . 2𝑘−1) ∈ Z𝑘
𝑞 for

𝑘 = ⌈lg 𝑞⌉, such that 𝐺 = 𝐼𝑛 ⊗ 𝑔𝑡. This gives the property that for any matrix

𝐴 ∈ Z𝑛×𝑚
𝑞 we have 𝐺 · BD(𝐴) = 𝐴.

Discrete Gaussians Regev [Reg05] defined a natural distribution on lattice Λ𝑢
𝑞 (𝐴)

called a discrete Gausian parameterized by a scalar 𝜎 > 0. We let 𝒟𝜎(Λ𝑢
𝑞 (𝐴)) to

represent this distribution. For a random matrix 𝐴 ∈ Z𝑛×𝑚
𝑞 and 𝜎 = Ω̃(

√
𝑛), a

vector 𝑥 sampled from 𝒟𝜃(Λ
𝑢
𝑞 (𝐴)) has 𝑙2 norm less than 𝜎

√
𝑚 with probability at

least 1− negl(𝑚).
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With these algorithms in mind, we recall algorithms that allow us to solve 𝐴𝑋 =

𝑈 . In other words, given 𝐴 ∈ Z𝑛×𝑚
𝑞 , 𝑈 ∈ Z𝑛×𝑘

𝑞 we wish to find a low-norm matrix

𝑋 ∈ Z𝑚×𝑘 such that 𝐴𝑋 = 𝑈 .

Lemma 3. Let 𝐴 ∈ Z𝑛×𝑚
𝑞 and 𝑇𝐴 ∈ Z𝑚×𝑚 be the basis for Λ⊥

𝑞 (𝐴). Let 𝑈 ∈ Z𝑛×𝑘
𝑞 .

There are PPT algorithms that output 𝑋 satisfying 𝐴𝑋 = 𝑈 with the properties below:

∙ SampleD(𝐴, 𝑇𝐴, 𝑈, 𝜎)→ 𝑋 SampleD is a randomized algorithm that, when 𝜎 =

||𝑇𝐴|𝐺𝑆 · 𝜔(
√

log𝑚), outputs a random sample 𝑋 from a distribution that is

statistically close to 𝒟𝜃(Λ
𝑢
𝑞 (𝐴)).

In addition, we also have the following algorithms:

Lemma 4. We present the SampleRight and SampleLeft algorithms below [MP12]:

∙ SampleRight(𝐴, 𝑇𝐴, 𝐵, 𝑈, 𝜎): This is a randomize algorithm that given full rank

matrices 𝐴,𝐵 ∈ Z𝑛×𝑚
𝑞 , matrix 𝑈 ∈ Z𝑛×𝑚

𝑞 , and a basis 𝑇𝐴 ∈ Z𝑚×𝑚 for Λ⊥
𝑞 (𝐴)

where 𝜎 = ||𝑇𝐴|𝐺𝑆 ·𝜔(
√

log𝑚), outputs a random sample 𝑋 ∈ Z2𝑚×𝑚
𝑞 from a dis-

tribution statistically close to 𝒟𝜃(Λ
𝑢
𝑞 (𝐴|𝐵)). More specifically this algorithm is a

composition of ExtendRight(A,TA,B)→ 𝑇(𝐴|𝐵) and SampleD((𝐴|𝐵), 𝑇(𝐴|𝐵), 𝑈, 𝜎)→

𝑋

∙ SampleLeft(𝐴, 𝑇𝐴, 𝐵, 𝑢, 𝛼): This is a randomized algorithm that given full rank

matrices 𝐴 ∈ Z𝑛×𝑚
𝑞 , 𝐵 ∈ Z𝑛×𝑚1

𝑞 , a short basis 𝑇𝐴 of Λ⊥
𝑞 (𝐴), a vector 𝑢 ∈ Z𝑛

𝑞 ,

along with Gaussian parameter 𝛼, this algorithm outputs the following. Let

𝐹 = (𝐴||𝐵), and algorithm outputs a vector 𝑒 ∈ Z𝑚+𝑚1 in coset Λ𝐹+𝑢.

2.3 Learning with Errors

The LWE assumption was introduced by Regev [Reg05], which shows that solving it

on the average is as hard as solving several standard lattice problems even in the worst

case. It is conjectured that the solving the LWE problem is hard even on quantum

computers, such that lattice-based cryptographic primitives may offer post-quantum

security.
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Definition 5 (Learning with Errors [Reg05]). For an integer 𝑞 = 𝑞(𝑛) ≥ 2 and

an error distribution 𝜒 = 𝜒(𝑛) over Z𝑞, the decision learning with errors problem

dLWE𝑛,𝑚,𝑞,𝜒 is the assumption that the following pairs of distributions are computa-

tionally indistinguishable

(𝐴,𝐴𝑠 + 𝑥) ≈𝑐 (𝐴, 𝑢)

where 𝐴
$← Z𝑛×𝑚

𝑞 , 𝑠
$← Z𝑚

𝑞 , 𝑥
$← 𝜒𝑚, 𝑢

$← Z𝑚
𝑞 .

We say that an error distribution 𝜒 is 𝐵-bounded if its support is in [−𝐵,𝐵]. The

error distribution is a truncated discrete Gaussian distribution.

When working over rings, we introduce the Ring Learning with Errors (RLWE)

assumption.

Definition 6 (Ring Learning with Errors [LPR12]). The RLWE assumption states

that:

{(𝑎𝑖, 𝑎𝑖 · 𝑠𝑖 + 𝑒𝑖)}
𝑐
≈ {(𝑎𝑖, 𝑢𝑖)}

For uniformly random chosen 𝑎𝑖, 𝑢𝑖 in 𝑅𝑞 and where 𝑠𝑖, 𝑒𝑖 are drawn from an error

distribution 𝜒.

2.4 Secret Sharing

In this subsection, we provide the basic definitions and notations for secret sharing,

similar to [BGG+17].

Definition 7 (Monotone Access Structure). Let 𝑃 = {𝑃1, . . . 𝑃𝑁} be a set of parties.

A collection A ⊆ 𝒫(𝑃 ) is monotone if for any sets 𝐵,𝐶 satisfying 𝐵 ∈ A and 𝐵 ⊆

𝐶 ⊆ 𝑃 , then 𝐶 ∈ A. A monotone access structure on 𝑃 is a collection A ⊆ 𝒫(𝑃 )∖∅.

The sets in A are valid sets while the sets not in A are invalid sets. In other words,

supersets of a valid set are also valid.

We now present the definition of secret sharing [Sha79]:
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Definition 8 (Secret Sharing Scheme). Let 𝑃 = {𝑃1, . . . 𝑃𝑁} be a set of parties. A

secret sharing scheme 𝒮𝒮 for a secret space 𝒦 is a pair of PPT algorithms SS =

(SS.Share, SS.Combine) such that:

∙ SS.Share (𝑘,A) → (𝑠1, . . . 𝑠𝑁): On input with a secret 𝑘 ∈ 𝒦 and a defined

access structure A, the sharing algorithm returns shares (𝑠1, . . . 𝑠𝑁) for each

party.

∙ SS.Combine (𝑆)→ 𝑘: On input with a set of shares 𝑆 = {𝑠𝑖}𝑖∈𝑆, if 𝑆 is a valid

set within the access structure then the combining algorithm outputs the secret

𝑘.

Usually, there is a dealer who runs the SS.Share algorithm to deal secrets to the

𝑁 parties, while the 𝑁 parties jointly run SS.Combine to reconstruct the secret.

Correctness is defined as follows. For all 𝑆 ∈ A and for all 𝑘 ∈ 𝒦, given shares

(𝑠1, . . . 𝑠𝑁) ← SS.Share(𝑘,A), we see that SS.Combine({𝑠𝑖}𝑖∈𝑆) → 𝑘 with probability

1.

Security is defined as follows. For all 𝑆 /∈ A and for 𝑘0, 𝑘1 ∈ 𝒦, given shares

(𝑠1,𝑏, . . . 𝑠𝑁,𝑏)← SS.Share(𝑘𝑏,A), the following distributions are indistinguishable:

{𝑠𝑖,0}𝑖∈𝑆 ≈ {𝑠𝑖,1}𝑖∈𝑆

The indistinguishability definition is either computational or statistical depending

on the setting of the secret sharing scheme.

As an example, we present Shamir’s secret sharing scheme [Sha79]:

Definition 9 (Shamir’s Secret Sharing). Let ℱ be a finite field. Shamir’s secret-

sharing scheme is a secret sharing scheme with a 𝑡-of-𝑛 access structure, constructed

as follows:

∙ SS.Share(𝑠): Given a secret 𝑠, the sharing algorithm randomly chooses a degree

𝑡− 1 polynomial 𝑝(𝑥), where the constant coefficient is 𝑠. Party 𝑖 receives share

𝑝(𝑖), with 𝑛 total shares distributed among the 𝑛 parties. Note that 𝑡 or fewer

shares look uniformly random.
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∙ SS.Combine(𝑆): Given at least 𝑡 shares, the combining algorithm uses Lagrange

interpolation to find a unique degree 𝑡− 1 polynomial 𝑝′(𝑥) passing through the

𝑡 shares. The secret is recovered from 𝑝′(0).

The correctness of Shamir’s secret sharing is as follows. Given at least 𝑡 shares,

in which 𝑡 points uniquely determine a degree 𝑡 − 1 polynomial, the secret will be

uniquely and correctly reconstructed.

The security of Shamir’s secret sharing is as follows. Given at most 𝑡− 1 shares,

the distribution of the 𝑡 − 1 shares is uniformly random. Because for every secret

𝑠′ ̸= 𝑠, there exists a polynomial that could pass through 𝑠′ and the 𝑡 − 1 shares,

Shamir’s secret sharing scheme is information-theoretically secure (as there are no

computational assumptions for this scheme).

2.4.1 Linear Secret Sharing

We consider a special class of secret sharing schemes, known as linear secret sharing

schemes, where the combining algorithm SS.Combine consists of linear operations. A

linear secret sharing scheme has been shown to be equivalent to a monotone span

program [Bei].

Definition 10 (Linear Secret Sharing Scheme). Let 𝑃 = {𝑃1, . . . 𝑃𝑁} be a set of

parties, and A be an access structure. A linear secret sharing scheme consists of

a secret space 𝒦 = Z𝑝 for some prime 𝑝 such that the following properties for

SS.Share, SS.Combine are met:

∙ SS.Share: There exists a matrix 𝑀 ∈ Z𝑙×𝑁
𝑝 called the share matrix, such that

each party 𝑃𝑖 is associated with a row(s) 𝑇𝑖 ⊆ [𝑙] of the matrix. To create

the shares of a secret 𝑘, the sharing algorithm first samples random values

𝑟2, . . . 𝑟𝑛
𝑅← Z𝑝, and we define a vector w = M · (k, r2, . . . rn)T. The share for

𝑃𝑖 consists of the entries {𝑤𝑗}𝑗∈𝑇𝑖

∙ SS.Combine(𝑆): for any valid set 𝑆 ∈ A, we have that
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(1, 0, . . . 0) ∈ span({𝑀 [𝑗]}𝑗∈∪𝑖∈𝑆𝑇𝑖
)

over Z𝑝, where we let 𝑀 [𝑗] denote the 𝑗𝑡ℎ row of 𝑀 . Any valid set of parties

𝑆 ∈ A can efficiently find coefficients 𝑐𝑗 such that

∑︁
𝑗∈∪𝑖∈𝑆𝑇𝑖

𝑐𝑗 ·𝑀 [𝑗] = (1, 0, . . . 0)

This in turn allows for the reconstruction of the secret, in that 𝑘 =
∑︀

𝑗∈∪𝑖∈𝑆𝑇𝑖
𝑐𝑗𝑤𝑗.

The coefficients 𝑐𝑗 are known as the reconstruction coefficients.

For the purpose of lattice based encryption schemes, due to the noise in the

ciphertext as computation is done, we wish to keep our reconstruction coefficents

small. To do so, [BGG+17] defined a special class of access structures, known as

{0, 1}-Linear Secret Sharing Schemes, such that the reconstruction coefficients are

always binary.

Definition 11 ({0, 1}-Linear Secret Sharing Schemes). Let 𝑃 = {𝑃1, . . . 𝑃𝑁} be a set

of parties, and A be an access structure. A linear secret sharing scheme consists of a

secret space 𝒦 = Z𝑝 for some prime 𝑝 such that during SS.Combine, the reconstruction

coefficients 𝑐𝑗 ∈ {0, 1}.

A threshold access structure with parameter 𝑡 is a special type of access structure,

such that 𝑆 ∈ A exactly when |𝑆| ≥ 𝑡. It has been shown that the class of all

threshold access structures is in {0, 1} − 𝐿𝑆𝑆𝑆 [BGG+17].

We describe a construction that realizes the {0, 1} − 𝐿𝑆𝑆𝑆 in figure 2.4.1.

We can represent every threshold access structure as a special monotone Boolean

formula 𝐶 : {0, 1}𝑁 → {0, 1} where all of the input wires of 𝐶 have fan-out of 1.

Given this formula, we can define 𝐶 as a tree where we associate the root note as the

output of the 𝐶, and the two children of each node are the inputs of a gate.

We associate the root node with value 𝑚𝑟 = 1. For every node 𝑣, if it is associated

with a OR gate, we let the two children 𝑣𝑙, 𝑣𝑟 have values 𝑚𝑣𝑙 = 𝑚𝑣𝑟 = 𝑚𝑣. If node 𝑣
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“Folklore Algorithm"

Input: A special monotone Boolean formula 𝐶 : {0, 1}𝑁 → {0, 1}
Output: A LSSS share Matrix M for the access structure induced by 𝐶.

1. Label root 𝑟 with length 1 vector m𝑟 = (1)

2. Initialize counter count = 1.

3. For 𝑣 = v(𝑖) for 𝑖 = 1, . . . , 𝑛.

(a) If 𝑣 is an OR gate, label its children with the same vector as 𝑚

(b) if 𝑣 is an AND gate with vector m𝑣 associated with it, then pad m with
0s at the end to make it length count. Denote the new vector by m′. Let
one of its children have value (m′, 1) and the other vector with children
(0, . . . , 0,−1) with length count + 1. Finally, increase count by 1.

4. Finally, once the entire tree is labeled, the vectors of the leaf nodes are the rows
associated with the sharing matrix M. If some of the vectors have different
lengths, the shorter vectors are padded with 0s.

5. For a monotone span program where w = M · (k, r2, . . . , rn)T where 𝑘 is the
secret and 𝑟𝑖 are random values in Z𝑞, the shares given to party 𝑃𝑖 consists of
the entries {𝑤𝑗}𝑗∈𝑇𝑖

, or the corresponding leafs in the circuit 𝐶.

Figure 2-1: A “folklore” linear secret sharing algorithm [BGG+17].
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is associated with an AND gate, we define 𝑚𝑣𝑙 = (𝑚𝑙, 1) and 𝑚𝑣𝑟 = (0, 0, . . . , 0,−1).

In other words, we define the children to have it’s value length increased by 1. Once

the entire tree is labeled, we associate the leaf nodes of the tree with values the parties

associated with inputs to 𝐶, and we append 0s at the end of every node such that

every node’s value will be the same length.

We can now define a monotone span program 𝐴𝑟 = 𝑏, where each row in matrix

𝐴 contains the values associated with the leafs in the tree of 𝐶, 𝑟 is a random vector

except where the first entry is the secret to be shared, and each entry of 𝑏 is a share

for the party associated with the row in 𝐴.

Using this secret sharing scheme, we can guarantee that during the final decryption

protocol, the coefficients associated with the partial shares will be binary [BGG+17].

2.4.2 Extensions of {0,1}-LSSS

One thing worth noting is that the folklore secret sharing scheme requires 𝑂(𝑛5.2)

shares for a threshold access structure with 𝑛 parties [Val84, Gol14]. However, the

secret sharing construction uses a formula, which is graphically represented as a tree,

instead of a circuit. [VNS+03] shows a computational secret sharing scheme which

uses a circuit-based structure, with AND, OR, and FAN-IN gates (of fan-in two).

For our folklore algorithm, we keep AND and OR gates as is, and FAN-IN gates can

be masked with one-time pads to preserve security. A share size less than that of

the formula can be obtained using algorithms from [Weg87], in which the threshold

function can be done with 𝑂(𝑛2) input wires with 𝑛2 fanout gates, beating the 𝑂(𝑛5.2)

formula upper bound.
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Chapter 3

Fully Homomorphic Encryption

3.1 Fully Homomorphic Encryption

3.1.1 Definitions of FHE

We briefly present the definitions of a public-key fully homomorphic encryption (FHE)

scheme in this section.

Definition 12 (Fully Homomorphic Encryption). A FHE scheme consists of the

following PPT algorithms ((FHE.KeyGen, FHE.Enc, FHE.Eval, FHE.Dec)):

∙ FHE.KeyGen(1𝜆, 1𝑑, 1𝑘) → (𝑝𝑘, 𝑠𝑘). The key generation algorithm is a proba-

bilistic algorithm that takes in the security parameter 𝜆, depth bound 𝑑, and

message length 𝑘 and outputs a secret key 𝑠𝑘 and public key 𝑝𝑘.

∙ FHE.Enc(𝑝𝑘, 𝜇)→ 𝑐𝑡. The encryption algorithm is a probabilistic algorithm that

takes in input the public key of the FHE scheme, and a message 𝜇 ∈ {0, 1}𝑘 and

outputs a ciphertext 𝑐𝑡.

∙ FHE.Eval(𝒞, 𝑐𝑡) → 𝑐𝑡′. The evaluation algorithm is a deterministic algorithm

that takes in as input a boolean circuit 𝒞 : {0, 1}𝑘 → {0, 1}, a ciphertext 𝑐𝑡,

and outputs another ciphertext 𝑐𝑡′ which is the evaluation of the circuit on the

ciphertext input.
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∙ FHE.Dec(𝑠𝑘, 𝑐𝑡′) → 𝜇. The decryption algorithm is a deterministic algorithm

that takes as input the secret key 𝑠𝑘 and a ciphertext 𝑐𝑡′ and outputs a bit

corresponding to the ciphertext.

Note that a symmetric-key FHE scheme can be similarly defined if there is no

public key and the secret key is used for both encryption and decryption.

A fully homomorphic encryption scheme has the following requirements for cor-

rectness, security, and compactness. For correctness, we wish that the decryption of

an evaluated ciphertext should output a plaintext that is equal to the evaluation of

the plaintexts corresponding to the original ciphertext. For the semantic security, we

require the following distributions to be computationally indistinguishable, for any

two messages 𝜇0, 𝜇1.

(𝑝𝑘,Enc(𝑝𝑘, 𝜇0)) ≈𝑐 (𝑝𝑘,Enc(𝑝𝑘, 𝜇0))

There is also a notion of compactness, in that the size of the ciphertext should not

grow with the evaluation circuit depth –otherwise a trivial construction of FHE can

be attained. More formally, a ciphertext 𝑐𝑡 is bounded by a polynomial 𝑝(. . . ) such

that |𝑐𝑡| ≤ 𝑝(𝜆, 𝑑) for depth bound 𝑑, but it should be independent of 𝒞

Current constructions of FHE are based on lattices [GSW13], specifically the

Learning with Errors (LWE) assumption [Reg05]. Fully Homomorphic Encryption

was first constructed by Gentry in 2009 [Gen09]. Subsequent second generation FHE

schemes were introduced by Brakerski and Vaikuntanathan, where optimizations such

as evaluation keys and modulus reduction were introduced [BV11]. The so-called

“third-generation” of FHE schemes include that of Gentry, Sahai andWaters [GSW13],

which eliminated the need of an evaluation key.

3.1.2 Construction of GSW FHE

Our foundation FHE scheme uses [GSW13]. To recap, a fully homomorphic scheme

has the following properties. We first have a SetUp phase such that public param-

eters are generated. As with all encryption schemes, we include PPT algorithms
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KeyGen, Encrypt, Decrypt. In addition, a FHE scheme also has two additional al-

gorithms, Add, Mult which operate on two ciphertexts to attain fully homomorphic

evaluation operations.

More formally, the operations are defined below:

∙ GSW.SetUp(1𝜆, 1𝑑): Output a random matrix B ∈ Z𝑛−1×𝑚
𝑞

∙ GSW.KeyGen:

– To generate the secret key, first randomly sample 𝑛 − 1 random elements

and define s
$← Z𝑛−1

𝑞 . Define secret key t = (−𝑠, 1) ∈ Z𝑛
𝑞 .

– To generate the public key, sample 𝑚 elements from the error distribu-

tion 𝑒 ← 𝜒𝑚. Set b := sB + e ∈ Z𝑚
𝑞 . We define the public key to be

A :=

⎡⎣𝐵
𝑏

⎤⎦ ∈ Z𝑛×𝑚
𝑞 .

∙ GSW.Encrypt(𝑝𝑘, 𝜇): To encrypt a bit 𝜇 ∈ {= 0, 1}, first choose a random binary

matrix 𝑅
$← {0, 1}𝑚×𝑚. Output ciphertext 𝐶 := 𝐴𝑅 + 𝜇𝐺

∙ GSW.Decrypt(𝑠𝑘, 𝐶) : Given a ciphertext, and secret key 𝑡 := 𝑠𝑘, define a vector

w of length 𝑛 where

𝑤 = [0, 0, . . . 0, ⌈𝑞/2⌉]

Next, compute 𝑣 = 𝑡𝐶𝐺−1(𝑤) = 𝑒 + 𝜇(𝑞/2) and output
⃒⃒⌊︀

𝑣
𝑞/2

⌉︀⃒⃒
as the decryp-

tion1.

∙ GSW.Eval: for the evaluation operation, we define homomorphic addition and

multiplication as follows

– GSW.Add(𝐶1, 𝐶2): Output 𝐶+ = 𝐶1 + 𝐶2 ∈ Z𝑛×𝑚
𝑞 .

– GSW.Mult(𝐶1, 𝐶2): Output 𝐶* = 𝐶1𝐺
−1(𝐶2) ∈ Z𝑛×𝑚

𝑞 .

1Note that 𝐺−1(𝑤) is simply a vector where the last entry is 1 and all other entries are 0
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3.1.3 Noise Analysis of GSW

In this subsection, we will see how the ciphertext noise increases with certain functions

in the GSW encryption scheme. We analyze the noise to prove the correctness of the

GSW scheme. Note that GSW.SetUp, GSW.KeyGen do not contribute to the noise of

the ciphertext, while GSW.Encrypt, GSW.Eval contribute to the noise of the ciphertext

and GSW.Decrypt will only work correctly if the ciphertext is not too noisy. First, we

use the following definition:

Definition 13 (𝛽-noisy ciphertext [MW16]). We define a 𝛽-noisy ciphertext 𝐶 of

some message 𝜇 such that when the ciphertext is multiplied with secret key 𝑡, we see

𝑡𝐶 = 𝜇𝑡𝐺 + 𝑒 where ||𝑒||∞ ≤ 𝛽.

Now, we will show that GSW.Encrypt, GSW.Eval, GSW.Decrypt preserve correct-

ness under the consideration of noise.

∙ GSW.Encrypt: We define a fresh ciphertext to have 𝛽𝑖𝑛𝑖𝑡 noise. First, note that

𝑡𝐴 = 𝑒 where ||𝑒||∞ ≤ 𝐵𝜒. We see that 𝐶 = 𝐴𝑅 + 𝜇𝐺 so 𝑡𝐶 = 𝜇𝑡𝐺 + 𝑒′ where

𝑒′ = 𝑒𝑅. Thus, we see that ||𝑒′||∞ ≤ 𝑚𝐵𝜒. Finally, we can define 𝛽𝑖𝑛𝑖𝑡 = 𝑚𝐵𝜒.

∙ GSW.Add: First, let us assume that ciphertext 𝐶1 has 𝛽1 noise and 𝐶2 has 𝛽2

noise. To perform the addition operation, we see that 𝐶+ = 𝐶1 + 𝐶2, so the

noise of 𝐶+ is 𝛽1 + 𝛽2.

∙ GSW.Mult: The noise analysis of multiplying ciphertexts is slightly trickier.

Once again, let ciphertext 𝐶1 have 𝛽1 noise and 𝐶2 have 𝛽2 noise. The multipli-

cation operation consists of 𝐶* = 𝐶1𝐺
−1𝐶2. Thus, we see that 𝑡𝐶* = 𝑒′′+𝜇1𝜇2𝐺,

where 𝑒′′ = 𝑒𝐺−1(𝐶2) + 𝜇1𝑒2. Thus we see that ||𝑒′′||∞ ≤ 𝑚𝛽1 + 𝛽2 so the re-

sulting ciphertext noise is (𝑚𝛽1 + 𝛽2).

∙ GSW.Decrypt: Assume our ciphertext 𝐶 (which may be an evaluated ciphertext)

has 𝛽-noise. In other words, we have 𝑡𝐶 = 𝑒 + 𝜇𝑡𝐺 where ||𝑒||∞ = 𝛽. When

deecrypting, we see that 𝑣 = 𝑡𝐶𝐺−1(𝑤𝑇 ) = 𝑒′+𝜇(𝑞/2) where 𝑒′ = ⟨𝑒,𝐺−1(𝑤𝑇 )⟩.

We know that ||𝑒′|| ≤ 𝑚𝛽. Thus, we can see that as long as ||𝑒′|| < 𝑞/4,
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decryption will work properly. All ciphertexts with noise less than 𝛽𝑚𝑎𝑥 can be

decrypted properly when 𝛽𝑚𝑎𝑥 := 𝑞/4𝑚.

Evaluation Depth Note that in order for ciphertexts to have less than 𝛽𝑚𝑎𝑥 noise, we

must also consider the evaluation depth of the circuit. Let 𝑑 be the depth of a circuit

𝑓 , namely we assume that there are 𝑑 layers of multiplication. Assume the circuit

takes in fresh ciphertexts 𝐶1, 𝐶2, . . . 𝐶𝑛 each with 𝛽𝑖𝑛𝑖𝑡 noise. Each multiplication will

increase the noise by a multiplicative factor of (𝑚 + 1). Thus evaluated ciphertext

𝐶 = 𝑓(𝐶1, 𝐶2, . . . 𝐶𝑛) will have (𝑚 + 1)𝑑𝛽𝑖𝑛𝑖𝑡 noise. As we know 𝛽𝑖𝑛𝑖𝑡 = 𝑚𝐵𝜒 and

we want decryption to work properly, we want (𝑚 + 1)𝑑𝛽𝑖𝑛𝑖𝑡 < 𝑞/(4𝑚). In other

words, we want (𝑚 + 1)𝑑4𝑚2𝐵𝜒 < 𝑞. Given our initial parameter choice, we see that

correctness is preserved when 𝑞 = 𝐵𝜒2𝜔(𝑑𝜆 log 𝜆).

3.1.4 Construction of NTRU FHE

In this subsection, we present an alternative FHE scheme based on the NTRU en-

cryption scheme of Hofftein et al [HPS98]. This encryption scheme was subsequently

modified by [SS11] and [LTV13] to based the encryption scheme on lattice-based

assumptions and to modify to become a FHE scheme respectively.

The scheme is defined as follows:

∙ Keygen(1𝜆): Given security parameter, sample polynomials, 𝑓 ′, 𝑔 ← 𝜒 and set

𝑓
def
= 2𝑓 ′ + 1 so that 𝑓 ≡ 1 mod 2. If 𝑓 is not invertible in 𝑅𝑞, then resample

𝑓 ′, otherwise let 𝑓−1 be the inverse of 𝑓 in 𝑅1. Let the public key be pk def
= ℎ =

[2𝑔𝑓−1]𝑞 ∈ 𝑅𝑞 and the secret key be sk
def
= 𝑓 ∈ 𝑅.

∙ Enc(𝑝𝑘,𝑚): The encryption algorithm is a randomized algorithm where we wish

to encrypt a bit ,∈ {0, 1} with public key ℎ. We sample polynomials 𝑠, 𝑒 ← 𝜒

from the error distribution and output the ciphertext as

𝑐
def
= [ℎ𝑠 + 2𝑒 + 𝑚]𝑞 ∈ 𝑅𝑞
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∙ Dec(𝑠𝑘, 𝑐): The decryption algorithm is a deterministic algorithm where given

the secret key 𝑓 , let 𝜇 =
def
= [𝑓𝑐]𝑞 and output 𝑚 def

= 𝜇 mod 2.

Correctness of the scheme is seen because as long as there is no reduction modulo

𝑞, we see that the decryption algorithm computes

[𝑓𝑐]𝑞 mod 2 = [𝑓ℎ𝑠 + 2𝑓𝑒 + 𝑓𝑚]𝑞 mod 2 = 2𝑔𝑠 + 2𝑓𝑒 + 𝑓𝑚 mod 2 = 𝑚

The choice of parameter 𝜑(𝑥) = 𝑥𝑛 + 1 ensures that there is no reduction modulo

𝑞.

The security of the NTRU encryption scheme presented above is based on the

Ring Learning with Errors assumption and also the Decisional Small Polynomial

Ratio (DSPR) assumption.

Definition 14 (Decisional Small Polynomial Ratio Assumption). Let 𝜑(𝑥) = Z[𝑥]

be a polynomial of degree 𝑛, and let 𝑞 ∈ Z be a prime integer, and let 𝜒 denote a

distribution over the ring 𝑅
def
= Z[𝑥]/⟨𝜑(𝑥)⟩. The DSPR assumption says that it is

hard to distinguish between the following two distributions:

∙ A polynomial ℎ
def
= [2𝑔𝑓−1]𝑞, where 𝑓

′ and 𝑔 are sampled from distribution 𝜒 and

𝑓 = 2𝑓 ′ + 1 and 𝑓−1 is the inverse of 𝑓 in 𝑅𝑞

∙ A polynomial 𝑢 sampled uniformly random over 𝑅𝑞.

The security proof of the NTRU scheme uses a hybrid argument as follows:

∙ Hybrid 0: The NTRU scheme with public key ℎ, private key 𝑓

∙ Hybrid 1: The NTRU scheme, instead replacing the public key ℎ with a

uniformly sampled ℎ. This relies on the DSPR assumption.

∙ Hybrid 2: The NTRU scheme, except changing the ciphertext from 𝑐 = [ℎ𝑠 +

2𝑒 + 𝑚]𝑞 to 𝑐 = [𝑢 + 𝑚]𝑞 where 𝑢 is uniformly sampled from 𝑅𝑞. This relies on

the RLWE assumption.
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Lopez-Alt et al noticed that the NTRU encryption scheme can also be converted

to a fully homomorphic scheme. This is presented in the multi-key NTRU FHE in

section 3.2.4.

3.2 Multi-Key FHE

Multi-key Fully Homomorphic Encryption (MFHE) is a paradigm introduced by

Lopez-Alt, Tromer, and Vaikuntanathan [LTV13], in which ciphertexts encrypted

under separate keys can still be used in computation in the same function. Assume

there are 𝑁 parties who jointly wish to encrypt their data under their own respective

keys, and share the ciphertexts 𝐶 with a third party. Through a ciphertext expansion

process, we can derive a new ciphertext 𝐶 encrypted under the set of all 𝑁 parties

public key.

More formally, the Multi-Key FHE scheme is a tuple of algorithms defined as

follows:

Definition 15 (Multi-Key FHE). A multi-key FHE scheme is a tuple of algorithms

described as follows:

∙ Setup(1𝜆, 1𝑑)→ params: Setup is a PPT algorithm given security parameter 𝜆,

circuit depth 𝑑, and outputs the system parameters, where all the other algo-

rithms take in the parameters implicitly.

∙ Keygen(params) → (𝑝𝑘, 𝑠𝑘): The key generation algorithm outputs the public

and secret keys.

∙ Encrypt(𝑝𝑘, 𝜇) → 𝑐𝑡. The encryption algorithm is a randomized algorithm that

uses a public key to encrypt a message 𝜇, outputting ciphertext 𝑐𝑡.

∙ Expand((𝑝𝑘1, . . . , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡) → ̂︀𝑐𝑡. The expansion algorithm is a deterministic

algorithm that, given a sequence of 𝑁 public-keys and a fresh ciphertext 𝑐𝑡,

output an expanded ciphertext ̂︀𝑐𝑡.
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∙ Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙) → ̂︀𝑐𝑡. The evaluation algorithm is a deterministic

algorithm and is given a circuit 𝒞 along with 𝑙 expanded ciphertext, and outputs

an evaluated ciphertext ̂︀𝑐𝑡.
∙ Decrypt(𝑝𝑎𝑟𝑎𝑚𝑠, (𝑠𝑘1, . . . , 𝑠𝑘𝑁), ̂︀𝑐𝑡) → 𝜇. The decryption algorithm is a deter-

ministic algorithm that is given a ciphertext and a sequence of 𝑁 secret keys.

It outputs the underlying message 𝜇.

The notion of a “fresh” ciphertext as defined above is a ciphertext that has not had

evaluations computed on it. In other words, a ciphertext is fresh if it was generated

from the encryption algorithm.

The MFHE scheme keeps the FHE algorithms SetUp, KeyGen, Encrypt, Eval, Decrypt

and also introduces a new algorithm Expand that transforms a ciphertext encrypted

under one key in the GSW FHE scheme to become encrypted under multiple keys in

a modified GSW FHE scheme. We also modify Decrypt to attain a single round 𝑁 -

of-𝑁 threshold decrpytion scheme, where each of the 𝑁 parties will output a partial

decryption of an expanded ciphertext, such that combining the partial decryptions

will result in the decrypted expanded ciphertext.

While 𝐶1 may have been encrypted under the first party’s key and 𝐶2 may have

been encrypted under the second party’s key, we can expand the two ciphertexts to

obtain 𝐶1, 𝐶2 such that joint homomorphic computation is possible on 𝐶𝑖. Evaluation

on the expanded ciphertexts will yield 𝐶 = 𝑓(𝐶1, 𝐶2 . . . , 𝐶𝑖) for a function 𝑓 with 𝑖

inputs. In order to decrypt 𝐶 in a secure manner, all 𝑁 parties will user their secret

keys independently to output a partial decryption 𝑝𝑖, such that
∑︀

𝑖 𝑝𝑖 will yield the

plaintext of ciphertext 𝐶.

To present the GSW Multi-Key FHE as constructed in [MW16], we first present

auxiliary algorithms and definitions, namely the expanded gadget matrix and linear

combination function, which allows for the construction of Multi-Key FHE.
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3.2.1 Notation & Prelim for GSW Multi-Key FHE

To begin, let us define some notation. Define 𝑠𝑘 = 𝑡 = [𝑡1, 𝑡2, . . . 𝑡𝑁 ] ∈ Z𝑚𝑁
𝑞 be

the concatenation of all the secret keys. We define the expanded gadget matrix

𝐺𝑁 ∈ Z𝑛𝑁×𝑚𝑁
𝑞 as follows:

𝐺𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐺

𝐺

. . .

𝐺

⎤⎥⎥⎥⎥⎥⎥⎦
There is also an inverse function 𝐺−1

𝑁 such that for any matrix 𝑉 with 𝑛𝑁 rows,

we see that 𝐺−1
𝑁 (𝑉 ) ∈ {0, 1}𝑚𝑁×𝑚𝑁 and that 𝐺𝑁𝐺

−1
𝑁 (𝑉 ) = 𝑉 .

In order to define 𝐶, let us work in the simplified case where 𝑁 = 2. Assume

that 𝐶1, the encryption of 𝜇1, is encrypted under party 1’s public key. We wish to

construct ̂︁𝐶1 such that

𝐶1 =

⎡⎣𝐶1 𝑋

0 𝐶1

⎤⎦
Such that 𝑡𝐶1 = 𝜇1𝑡𝐺2. We see that 𝑡𝐶1 = [𝑡1𝐶1, 𝑡1𝑋 + 𝑡2𝐶]. Note that 𝑡2 =

(−𝑠2, 1) and public key 𝐴1 =

⎡⎣𝐵
𝑏1

⎤⎦ where 𝑏2 = 𝑡2𝐵 + 𝑒 so we see

𝑡2𝐶1 = (−𝑠2, 1)(𝐴1𝑅 + 𝜇1𝐺) = −𝑠2𝐵𝑅 + 𝑏1𝑅 + 𝜇1𝑡2𝐺 ≈ (−𝑏2 + 𝑏1)𝑅 + 𝜇1𝑡2𝐺

Thus, if we set 𝑋 such that 𝑡1𝑋 ≈ (𝑏2 − 𝑏1)𝑅, we see that 𝑡1𝑋 + 𝑡2𝐶 ≈ 𝜇𝑡2𝐺 and

thus we have attained our desired property for ̂︁𝐶1. We can create 𝑋 through two

auxiliary functions, one that also encrypts the randomness used to encrypt 𝜇1, and

one function that uses this subsequent information to generate 𝑋.

Firstly, define EncRand [MW16]. In the standard GSW FHE scheme, we encrypt

a ciphertext 𝐶 = 𝐴𝑅 + 𝜇𝐺 for some 𝑅
$← {0, 1}𝑚×𝑚.
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Definition 16 (Encryption of Randomness). Given a binary matrix 𝑅, EncRand(𝑅, 𝑡)

outputs an array of 𝑚2 ciphertexts 𝒰 of all the bits of 𝑅, encrypted under a secret

key 𝑡.

In other words, if we index 𝒰 as 𝒰𝑖,𝑗, where 𝑖, 𝑗 ∈ [0 : 𝑚 − 1], we can think of

𝒰𝑖,𝑗 = 𝐴𝑅′ + 𝑅𝑖,𝑗𝐺 where 𝑅𝑖,𝑗 is the bit at the 𝑖th row and 𝑗th column of 𝑅. The

randomness 𝑅′ used to encrypt 𝑅𝑖,𝑗 can be subsequently forgotten.

Now, we can use 𝒰 to generate 𝑋. We define a “linear combination" function

LComb to achieve such property:

Definition 17 (Linear Combination Function [MW16]). Assume we have a binary

𝑚 × 𝑚 matrix 𝑅, such that 𝒰 ← EncRand(𝑅, 𝑡) for some secret key 𝑡. Let 𝑣 be a

vector. LComb(𝒰 , 𝑣) which outputs 𝐶𝑙𝑐, such that 𝑡𝐶𝑙𝑐 = 𝑣𝑅 + 𝑒.

To implement the function, we define 𝑚2 matrices 𝑍𝑖,𝑗 ∈ Z𝑛×𝑚
𝑞 where 𝑖, 𝑗 ∈ [1 : 𝑚]

as follows. The matrix 𝑍𝑖,𝑗 is mostly zeros, except at the last row and 𝑗th column

where 𝑍𝑖,𝑗 = 𝑣[𝑖]. In other words, 𝑍𝑖,𝑗[𝑛, 𝑗] = 𝑣[𝑖], and all other entries of 𝑍𝑖,𝑗 are 0.

With this, we can define 𝐶𝑙𝑐 =
∑︀𝑚,𝑚

𝑖=1,𝑗=1 𝑈𝑖,𝑗𝐺
−1(𝑍𝑖,𝑗). A full proof of correctness

can be found in [MW16].

Now, if 𝒰 is the encrypted randomness associated with ciphertext 𝐶 under party

1’s public key, if we run LComb(𝒰 , (𝑏2 − 𝑏1)) to attain 𝐶𝑙𝑐, we see that 𝑡1𝐶𝑙𝑐 =

(𝑏2 − 𝑏1)𝑅 + 𝑒 for some error 𝑒, which is exactly what we desire to set 𝑋 as.

3.2.2 GSW Multi-Key FHE

Given our preliminary auxiliary functions, we can now describe the following functions

in a Multi-Key FHE, based off of the GSW FHE Scheme:

∙ MFHE.SetUp(1𝜆, 1𝑑): We run GSW.SetUp to set up the parameters params =

(𝑞, 𝑛,𝑚, 𝜒,𝐵𝜒,B).

∙ MFHE.KeyGen(params): for each party, generate the (𝑠𝑘, 𝑝𝑘) pair for a GSW

scheme as follows:
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– 𝑠𝑘 = 𝑡← GSW.SKGen(params)

– 𝑝𝑘 = A =← GSW.PKGen(params).

∙ MFHE.Encrypt(𝑝𝑘, 𝜇): The encryption scheme used here is a modification of the

GSW encryption scheme. We output the pair 𝑐 = (𝐶,𝒰) defined as follows:

– 𝐶 ← GSW.Enc(𝑝𝑘, 𝜇) = 𝐴𝑅 + 𝜇𝐺

– 𝒰 ← EncRand(𝑅).

∙ MFHE.Expand((𝑝𝑘1, . . . 𝑝𝑘𝑁), 𝑖, 𝑐). Given all 𝑁 parties’ public keys, and a fresh

ciphertext 2 party 𝑖 wishes to create an expanded ciphertext 𝐶 ∈ Z𝑛𝑁×𝑚𝑁
𝑞 .

– First, let 𝑋𝑗 ← LComb(𝒰 , (𝑏𝑗 − 𝑏𝑖)) for 𝑗 ̸= 𝑖.

– Now we construct 𝐶. Imagine this matrix as a concatenation of 𝑁2 sub-

matrices, such that each 𝐶𝑎,𝑏 ∈ Z𝑛×𝑚
𝑞 for 𝑎, 𝑏 ∈ [1 : 𝑁 ] is defined as follows:

𝐶𝑎,𝑏 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶 if 𝑎 = 𝑏

𝑋𝑗 if 𝑏 = 𝑗, 𝑎 = 𝑖 ̸= 𝑗

0 otherwise

In other words, a fresh expanded ciphertext ̂︀𝐶 will have the single-key

ciphertext 𝐶 along its diagonals, and the linear combination matrices 𝑋𝑗

along the 𝑖th row.

∙ MFHE.Eval: for the multi-key evaluation function, we can simply use the GSW

addition and multiplication algorithms, except in an expanded dimension and

using the expanded gadget matrices 𝐺𝑁 , 𝐺
−1
𝑁 . In other words, for ciphertextŝ︁𝐶1,̂︁𝐶2

– ̂︁𝐶+ = ̂︁𝐶1 + ̂︁𝐶2

– ̂︁𝐶× = ̂︁𝐶1𝐺
−1
𝑁 (̂︁𝐶2).

2Note: we need 𝑐 = (𝐶,𝒰) to be fresh for this particular MFHE scheme because it is "single
hop." For multi-hop FHE schemes, see [BP16, PS16]
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∙ MFHE.Decrypt(̂︀𝑡, ̂︀𝐶): Given all 𝑁 secret keys ̂︀𝑡 we can run the GSW decryption

scheme in an expanded manner. First define expanded ̂︀𝑤 = [0, 0, . . . 0, ⌈𝑞/2⌉] of

length 𝑛𝑁 . We can decrypt a ciphertext ̂︀𝐶 by running

𝑣 = ̂︀𝑡 ̂︀𝐶̂︂𝐺−1
𝑁 ( ̂︀𝑤)

and outputting
⃒⃒⌊︀

𝑣
𝑞/2

⌉︀⃒⃒
as the decryption.

Note, however, that MFHE.Decrypt will not be called in a practical setting, be-

cause no single entity will (or should) possess all 𝑁 secret keys. Instead, we run

an interactive protocol such that each party 𝑖, using her secret key 𝑡𝑖, can output a

partial decryption 𝑝𝑖 of the ciphertext ̂︀𝐶, as follows:
∙ MFHE.PartDec(𝑡𝑖, ̂︀𝐶): Given a secret key 𝑡𝑖, we first parse ̂︀𝐶 to consist of 𝑁

sub-matrices ̂︀𝐶(𝑖) ∈ Z𝑛×𝑚𝑁
𝑞 such that

̂︀𝐶 =

⎡⎢⎢⎢⎣
̂︀𝐶(1)

...̂︀𝐶(𝑁)

⎤⎥⎥⎥⎦

We define expanded ̂︀𝑤 = [0, 0, . . . 0, ⌈𝑞/2⌉] of length 𝑛𝑁 . We can partially

decrypt a ciphertext ̂︀𝐶 by outputting

𝑝𝑖 = 𝑡𝑖 ̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒𝑠𝑚𝑖

where 𝑒𝑠𝑚𝑖
$← [−𝐵𝑑𝑒𝑐, 𝐵𝑑𝑒𝑐] is some random smudging noise to mask 𝑡𝑖. We

define 𝐵𝑑𝑒𝑐 = 2𝑑𝜆 log 𝜆𝐵𝜒.

∙ MFHE.FinDec(𝑝1, . . . 𝑝𝑁): given 𝑁 partial decryptions, compute the sum 𝑝 =∑︀
𝑖 𝑝𝑖. We then output

⃒⃒⌊︀
𝑝

𝑞/2

⌉︀⃒⃒
as the decryption.
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3.2.3 Noise Analysis

Intuitively, we can see that due to the MFHE.Expand procedure, a multi-key FHE

ciphertext will contain more noise than a GSW ciphtertext. Assume that currently

𝑁 parties have contributed ciphertexts; in otherwords ̂︀𝐶 has dimension 𝑛𝑁 ×𝑚𝑁 .

Define 𝑛′ = 𝑛𝑁 and 𝑚′ = 𝑚𝑁 .

In order to preserve correctness, we will show that as long as a ciphertext ̂︀𝐶 has

noise 𝛽𝑓𝑖𝑛𝑎𝑙 ≤ 𝑞/(4𝑚′), decryption will correctly occur.

First, we note that a fresh expanded ciphertext ̂︀𝐶 –that is, a ciphertext of di-

mension 𝑛′ × 𝑚′ without having being evaluated –is a 𝛽𝑖𝑛𝑖𝑡-noisy ciphertext, where

𝛽𝑖𝑛𝑖𝑡 ≤ (𝑚4 + 𝑚)𝐵𝜒 [MW16]. We see that 𝛽𝑖𝑛𝑖𝑡 = 2𝑂(log 𝜆)𝐵𝜒.

In order to show correctness of evaluation, let ̂︀𝐶1, . . . , ̂︀𝐶𝑙 be freshly expanded

ciphertexts corresponding to bits 𝜇1, . . . 𝜇𝑙. Assume we are given a circuit 𝒞 of depth 𝑑,

such that 𝜇 = 𝒞(𝜇1, 𝜇2, . . . 𝜇𝑙) and ̂︀𝐶 = 𝒞( ̂︀𝐶1, ̂︀𝐶2, . . . ̂︀𝐶𝑙). We know that 𝑡𝐶 = 𝜇𝑡𝐺̂+ 𝑒

where ||𝑒||∞ ≤ 𝛽𝑖𝑛𝑖𝑡(𝑚
′+1)𝑑. If we define 𝛽𝑓𝑖𝑛𝑎𝑙 = 𝛽𝑖𝑛𝑖𝑡(𝑚

′+1)𝑑 = (𝑚4+𝑚)𝐵𝜒(𝑚′+1)𝑑,

we see that 𝛽𝑓𝑖𝑛𝑎𝑙 = 2𝑂(𝑑 log 𝜆)𝐵𝜒. As we chose 𝑞 = 𝐵𝜒2𝜔(𝑑𝜆 log 𝜆), we see that 𝛽𝑓𝑖𝑛𝑎𝑙 ≤

𝑞/(4𝑚′), which satisfies correctness of decryption.

To show the correctness of partial decrytion, assume we are given 𝑁 shares

𝑝1, . . . 𝑝𝑁 which correspond to the partial decryption of some ciphertext 𝐶 for bit

𝜇. We see that

𝑝 =
∑︁
𝑖

𝑝𝑖 =
∑︁
𝑖

𝑡𝑖𝐶
(𝑖) +

∑︁
𝑖

𝑒𝑠𝑚𝑖 = 𝑡𝐶̂︂𝐺−1
𝑁 ( ̂︀𝑤) +

∑︁
𝑖

𝑒𝑠𝑚𝑖

We know that 𝑡𝐶 = 𝜇𝑡𝐺̂+𝑒 where ||𝑒||∞ ≤ 𝛽𝑓𝑖𝑛𝑎𝑙. Thus, we see that 𝑒̂︂𝐺−1
𝑁 ( ̂︀𝑤) has

noise 𝛽𝑓𝑖𝑛𝑎𝑙𝑚𝑁 = 2𝑂(𝑑 log 𝜆)𝐵𝜒. We also see that ||
∑︀

𝑖 𝑒
𝑠𝑚
𝑖 ||∞ ≤ 𝑁𝐵𝑑𝑒𝑐 = 2𝑂(𝑑𝜆 log 𝜆)𝐵𝜒.

Thus, the noise from the decryption 𝑒̂︂𝐺−1
𝑁 ( ̂︀𝑤) and

∑︀
𝑖 𝑒

𝑠𝑚
𝑖 when summed together is

less than 𝑞/4, which shows correctness of our partial decryption.
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3.2.4 NTRU Multi-Key FHE

In this subsection, we describe the extension of NTRU to create a multi-key FHE

scheme, as designed by [LTV13].

We now show the extension of NTRU to the multi-key setting, first presented in

[LTV13].

Compared to the multi-key construction by Mukherjee and Wichs [MW16] based

on the GSW FHE Scheme [GSW13], the NTRU multi-key FHE scheme does not

require public parameters for the multi-key setting, and the size of the ciphertext

stays constant, while the size of the ciphertext grows with 𝑂(𝑁2) in [MW16], where

𝑁 is the number of parties participating in the multi-key FHE computation.

The multi-key extension of NTRU is presented as follows. We first present a

somewhat-homomorphic encryption scheme. We can then use modulus reduction

to create a leveled-fully homomorphic scheme, such that computing the decryption

circuit on the ciphertext is possible to make the scheme fully homomorphic.

∙ Keygen(1𝜅): Each party individually samples 𝑓 ′, 𝑔 ← 𝜒 and sets 𝑓
𝑑𝑒𝑓
= 2𝑓 ′ + 1 so

𝑓 ≡ 1( mod 2) If 𝑓 is not invertible in 𝑅𝑞, resample 𝑓 ′, otherwise let 𝑓−1 be

the inverse of 𝑓 in 𝑅𝑞. We let the public key be

𝑝𝑘
𝑑𝑒𝑓
= ℎ = [2𝑔𝑓−1]𝑞 ∈ 𝑅𝑞

and the secret key be

𝑠𝑘
𝑑𝑒𝑓
= 𝑓 ∈ 𝑅𝑞

In addition, we sample two more noise vectors 𝑠, 𝑒 ← 𝜒⌈log 𝑞⌉, and we compute

the evaluation key as a vector

𝑒𝑘
𝑑𝑒𝑓
= [ℎ𝑠 + 2𝑒 + 𝑃𝑜𝑤(𝑓)]𝑞 ∈ 𝑅⌈log 𝑞⌉

𝑞

where the power function 𝑃𝑜𝑤(𝑓) is the bitwise representation of 𝑓 multiplied

by its corresponding index. In other words, if 𝑓 = 𝑓log𝑞 . . . 𝑓1𝑓0 then 𝑃𝑜𝑤(𝑓) =

2log 𝑞𝑓log 𝑞, . . . 2
1𝑓1, 2

0𝑓0.
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∙ Enc(𝑝𝑘,𝑚): To encrypt 𝑚 ∈ {0, 1} with public key 𝑝𝑘 = ℎ, sample polynomials

𝑠, 𝑒← 𝜒 and output ciphertext

𝑐
𝑑𝑒𝑓
= [ℎ𝑠 + 2𝑒 + 𝑚]𝑞 ∈ 𝑅𝑞

∙ Dec(𝑠𝑘1, . . . 𝑠𝑘𝑁 , 𝑐): To decrypt ciphertext 𝑐 ∈ 𝑅𝑞, assume that ciphertext 𝑐 is

a function of encrytions by a subset of parties 𝑖 ∈ 𝐹 for some set 𝐹 . In other

words, 𝑐 = 𝑎(𝑐𝑖, 𝑐𝑘, . . . 𝑐𝑘) for 𝑖, 𝑗, . . . 𝑘 ∈ 𝐹 . We can decrypt as follows by first

computing

𝜇
𝑑𝑒𝑓
= [(Π𝑖∈𝐹𝑓𝑖)𝑐]𝑞 ∈ 𝑅𝑞

and then outputting

𝑚
𝑑𝑒𝑓
= 𝜇( mod 2)

∙ Eval(𝐶, (𝑐1, 𝑝𝑘1, 𝑒𝑘1), . . . (𝑐𝑙, 𝑝𝑘𝑙, 𝑒𝑘𝑙)): Given a 𝑙-variate boolean circuit 𝐶 : {0, 1}𝑙 →

{0, 1} of depth 𝐷, the Eval operation computes 𝑐 that is the evaluation of the

ciphertext. When given ciphertexts 𝑐𝑎, 𝑐𝑏, let 𝐾𝑎 and 𝐾𝑏 be the set of distinct

public keys associated with each ciphertext respectively. The public key set

of a fresh encryption 𝑐𝑖 is simply 𝐾𝑖 = {𝑝𝑘𝑖}. We now see how 𝐾 and 𝑐 are

computed through addition and multiplication operations:

– Addition: given ciphertexts 𝑐𝑎, 𝑐𝑏 with corresponding public key sets

𝐾𝑎, 𝐾𝑏, output 𝑐+ = [𝑐𝑎 + 𝑐𝑏]𝑞 ∈ 𝑅𝑞 as an encryption of the sum of the

underlying messages. We define 𝐾+ = 𝐾𝑎 ∪𝐾𝑏.

– Multiplication: given ciphertexts 𝑐𝑎, 𝑐𝑏 and corresponding public key sets

𝐾𝑎, 𝐾𝑏, we first denote 𝑐0 = [𝑐𝑎 · 𝑐𝑏]𝑞 ∈ 𝑅𝑞. If 𝐾𝑎 ∩ 𝐾𝑏 = ∅, then output

𝑐* = 𝑐0 and 𝐾* = 𝐾𝑎 ∪𝐾𝑏.

Otherwise, let 𝐾 ′ = 𝐾𝑎 ∩ 𝐾𝑏 = {𝑝𝑘𝑖1 , . . . 𝑝𝑘𝑖𝑡}. For 𝑗 ∈ [𝑡], compute

[⟨𝐵𝑖𝑡(𝑐𝑗−1), 𝑒𝑘𝑖,𝑗⟩]𝑞. This is the “relinearization" function that uses the

evaluation key. At the end, let 𝑐* = 𝑐𝑡 and 𝐾* = 𝐾𝑎 ∪𝐾𝑎.
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This preserves the property that Π𝑖∈𝐾*𝑓𝑖𝑐
* can be correctly decrypted 3.

Correctness and security of this multi-key FHE scheme is shown in [LTV13].

Shortcomings One issue with the decryption process is that all secret keys must

be used together at once to decrypt ciphertext 𝑐. In an ideal setting, each party,

using his own secret key 𝑠𝑘𝑖, should be able to output 𝑑𝑖 such that
∑︀

𝑘𝑖𝑑𝑖 = 𝑚 for

some coefficient 𝑘𝑖. The current decryption setup does not allow for this. In [LTV13],

in order to obtain a multi-party protocol, in which parties cannot output 𝑠𝑘𝑖 in the

clear for obvious security reasons, a MPC protocol for decryption is presented such

that no party 𝑗 will see 𝑠𝑘𝑖, yet the decryption can still be computed. Doröz et al

also provide extensions to the NTRU FHE scheme [DS16].

We present modifications to the NTRU multi-key FHE scheme in section 4.2 to

create a threshold multi-key FHE scheme.

3.3 Threshold FHE

Firstly, we should define a threshold FHE scheme. A threshold Fully Homomorphic

Scheme, first introduced in [BGG+17], builds on top of a FHE scheme with a sin-

gle public/secret key. Through a secret sharing scheme, the secret key 𝑠𝑘 can be

distributed among 𝑁 parties, with party 𝑖 having their own secret share 𝑠𝑘𝑖. Given

a ciphertext 𝐶, as long as 𝑘-of-𝑁 parties correctly output their partial decryptions

using 𝑠𝑘𝑖, the plaintext bit from 𝐶 can be correctly recovered.

A threshold FHE scheme uses a undelying fully homomorphic encryption scheme

such that the decryption procedure has a linear property. Say that a FHE decryption

scheme uses 𝑠𝑘 to decrypt a cipher text 𝑐𝑡 to obtain 𝑝. If we used two shares 𝑠𝑘1, 𝑠𝑘2

such that 𝑠𝑘1 + 𝑠𝑘2 = 𝑠𝑘, and we applied used 𝑠𝑘1 and 𝑠𝑘2 as secret keys for the

decryption scheme for 𝑐𝑡 to output 𝑝1, 𝑝2 respectively, then 𝑝1 + 𝑝2 = 𝑝. From a high

level overview, a threshold FHE should have the following algorithms.

3without using the “relinearization” function, to decrypt 𝑐0 we would need to compute
Π𝑖∈𝐾𝑎𝑓𝑖Π𝑗∈𝐾𝑏

𝑓𝑗𝑐0 = Π𝑖∈𝐾*𝑓𝑖Π𝑗∈𝐾𝑎∩𝐾𝑏
𝑓𝑗𝑐0 which reveals information about the circuit for which 𝑐

was computed from.
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∙ tFHE.KeyGen(params)→ (𝑝𝑘, 𝑠𝑘)The key generation algorithm takes in the pub-

lic parameters of the FHE scheme, and outputs a public and secret key pair.

∙ tFHE.KeyShare(𝑠𝑘,A) → (𝑠𝑘1, . . . 𝑠𝑘𝑁) The key sharing algorithm takes in a

secret key, an access structure A and outputs a set of 𝑁 shares of the secret

keys to distribute to the 𝑁 parties.

∙ tFHE.Enc(𝑝𝑘, 𝜇) → 𝑐𝑡: The encryption algorithm is a randomized algorithm

that, given the public key and a plaintext bit 𝜇, outputs the corresponding

ciphertext 𝑐𝑡.

∙ tFHE.Eval(𝒞, (𝑐𝑡1, . . . 𝑐𝑡𝑙))→ 𝑐𝑡: Given a set of ciphertexts (𝑐𝑡1, 𝑐𝑡2, . . . 𝑐𝑡𝑙), and

a circuit 𝒞, the evaluation algorithm will compute 𝑐𝑡← 𝒞(𝑐𝑡1, 𝑐𝑡2, . . . 𝑐𝑡𝑘).

∙ tFHE.PartDec(𝑠𝑘𝑖, 𝑐𝑡) → 𝑝𝑖: The partial decryption algorithm, given a party’s

secret key share and a ciphertext, will output a partial decryption 𝑝𝑖.

∙ tFHE.FinDec({𝑝𝑖}, 𝑐𝑡) → 𝜇: The final decryption algorithm is a deterministic

algorithm where, given a set of partial decryptions associated with a ciphertext,

will output the plaintext associated with 𝑐𝑡 if the set of partial decryptions is a

valid set, then. Otherwise, output ⊥.

The GSW FHE scheme is a valid FHE scheme from which we can build a threshold

FHE scheme. Thus, the Setup,KeyGen,Enc, and Eval algorithms for the tFHE scheme

are simply the same algorithms as the GSW FHE scheme. However, the key sharing

and partial decryption algorithms are modified.

In the following two subsections, we detail two ways to obtain a threshold fully ho-

momorphic encryption scheme with a threshold access structure. In a 𝑘-of-𝑛 threshold

access structure, any 𝑘 out of 𝑛 parties may use their secret keys to correctly decrypt

a ciphertext.

One key insight we note for designing a threshold FHE scheme is that when the

partial decryption algorithm is run, a smudging noise must be added to the partial

decryption as the output of a party, in order for the party’s secret key to not be
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{0,1}-LSSS Shamir
Secret Shares 𝑂(𝑛4.2) 𝑂(𝑛)
Ciphertext Growth 𝑂(1) 𝑂(𝑛 log 𝑛)

Table 3.1: Comparison of threshold FHE schemes [BGG+17].

learned. Thus, naively applying Shamir Secret Sharing Scheme may not work since

the coefficients multiplied to the partial outputs may be arbitrarily large [Sha79],

thus blowing up the noise. To compensate for this issue, we can limit the noise by

either having the coefficients multiplied to the partial outputs be binary, or increase

our underlying prime 𝑞 such that the Lagrange coefficients can be bounded.

3.3.1 {0,1}-LSSS Threshold FHE

The {0,1}-LSSS Threshold FHE scheme was proposed in [BGG+17]. By using this

secret sharing scheme, when combining the partial decryptions, since the reconstruc-

tion coefficients are binary, there is no contribution to the noise in the final decryption

ciphertext from the secret sharing scheme. Since the underlying FHE scheme can tol-

erate an amount of noise, applying the {0,1}-LSSS Threshold secret sharing structure

will preserve correctness.

∙ tFHE.KeyGen(params)→ (𝑝𝑘, 𝑠𝑘): Simply run (𝑝𝑘, 𝑠𝑘)← GSW.KeyGen(params).

∙ tFHE.KeyShare(𝑠𝑘,A)→ (𝑠𝑘1, . . . 𝑠𝑘𝑁): Use the {0, 1}-LSSS secret sharing method

as described in figure 2.4.1 to generate 𝑁 sets of shares, in which party 𝑖 receives

secret key share 𝑠𝑘𝑖.

∙ tFHE.Enc(𝑝𝑘, 𝜇)→ 𝑐𝑡: The encryption algorithm simply runs 𝑐𝑡← GSW.Enc(𝑝𝑘, 𝜇)

∙ tFHE.Eval(𝒞, (𝑐𝑡1, . . . 𝑐𝑡𝑙)) → 𝑐𝑡: The evaluation algorithm simply runs 𝑐𝑡 ←

GSW.Eval(𝒞, (𝑐𝑡1, . . . 𝑐𝑡𝑙))

∙ tFHE.PartDec(𝑠𝑘𝑖, 𝑐𝑡)→ 𝑝𝑖: The partial decryption algorithm uses 𝑠𝑘𝑖 and com-

putes 𝑝𝑖 ← GSW.Dec(𝑠𝑘𝑖, 𝑐𝑡). In other words, compute
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𝑝′𝑖 = (𝑠𝑘𝑖)(𝑐𝑡)𝐺
−1𝑤

The algorithm then outputs 𝑝𝑖 = 𝑝′𝑖 + 𝑒 where 𝑒 ∈ Z𝑞 is sampled from error

distribution 𝜒.

∙ tFHE.FinDec({𝑝𝑖}, 𝑐𝑡) → 𝜇: The final decryption algorithm, given a set of {𝑝𝑖}

partial decryptions, chooses a set of {𝑝𝑖} such that the corresponding secret

keys span the monotone span program as originally defined in the folklore secret

sharing scheme. The partial decrpytion is computed as 𝑝 =
∑︀

𝑖 𝑝𝑖 for a set of 𝑝𝑖

span the monotone span program. It then outputs 𝜇 = 0 if 𝑝 ∈ [−⌊ 𝑞
4
⌉, ⌊ 𝑞

4
⌉] and

𝜇 = 1 otherwise.

Note that the secret key shares in this scheme consists of many vectors. As the

folklore secret sharing scheme generates on the order of 𝑂(𝑁4.2) shares for each party,

the partial decryption algorithm will output 𝑂(𝑁4.2) partial decryptions. There exists

an efficient combining algorthm for tFHE.FinDec in [BGG+17].

The correctness of this scheme lies in the noise analysis. Due to the underly-

ing correctness of the GSW FHE scheme, and the fact that the noise output from

tFHE.PartDec is from the same distribution as the noise in the GSW FHE scheme,

correctness is maintained applying the threshold scheme on top of GSW.

The security of this scheme can be argued via a hybrid argument.

∙ Hybrid 0: The threshold FHE scheme, as stated above.

∙ Hybrid 1: Same as the threshold FHE scheme, except the challenger simulates

the partial decryptions. When an set of partial decryptions that is not within

the access structure is given, this hybrid is computationally indistinguishable

from the original tFHE scheme.

∙ Hybrid 2: Same as Hybrid 1, except the challenger now simulates secret key

shares 𝑠𝑘𝑖. From the information-theoretic security of the secret sharing scheme,

these two hybrids are indistinguishable.
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Chapter 4

Threshold Multi-Key Fully

Homomorphic Encryption

In this section, we detail new constructions combining secret sharing techniques where

the reconstruction coefficient is binary, with valid multi-key FHE schemes, to obtain

a threshold multi-key FHE scheme.

In a threshold multi-key setting, we wish to thresholdize the decryption process.

A threshold multi-key fully homomorphic encryption scheme is an extension of a

multi-key FHE scheme. However, instead having a strict 𝑁 -of-𝑁 threshold decryp-

tion requirement, we can use the thresholdizing process presented in [BGG+17] to

allow for a 𝑘-of-𝑁 threshold decryption process. All 𝑁 parties will still encrypt their

ciphertexts under their own generated public/secret key.

We denote a public-secret key pair as (𝑝𝑘𝑖, 𝑠𝑘𝑖) in the multi-key FHE scheme, and

party 𝑗’s share of 𝑠𝑘𝑖 is denoted as 𝑠𝑘(𝑗)
𝑖 .

Definition 18 (Threshold Multi-Key FHE). A threshold multi-key FHE scheme is a

tuple of algorithms described as follows:

∙ Setup(1𝜆, 1𝑑)→ params: Setup is a PPT algorithm given security parameter 𝜆,

circuit depth 𝑑, and outputs the system parameters, where all the other algo-

rithms take in the parameters implicitly.
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∙ Keygen(params) → (𝑝𝑘𝑖, 𝑠𝑘𝑖): The key generation algorithm outputs the public

and secret keys.

∙ KeyShare(𝑠𝑘𝑖,A𝑖)→ (𝑠𝑘
(1)
𝑖 , . . . 𝑠𝑘

(𝑁)
𝑖 ) The key sharing algorithm takes in a secret

key, an access structure A𝑖 for the 𝑖𝑡ℎ party and outputs a set of 𝑁 shares of

the secret keys to distribute to the 𝑁 parties.

∙ Encrypt(𝑝𝑘, 𝜇) → 𝑐𝑡. The encryption algorithm is a randomized algorithm that

uses a public key to encrypt a message 𝜇, outputting ciphertext 𝑐𝑡.

∙ Expand((𝑝𝑘1, . . . , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡) → ̂︀𝑐𝑡. The expansion algorithm is a deterministic

algorithm that, given a sequence of 𝑁 public-keys and a fresh ciphertext 𝑐𝑡,

output an expanded ciphertext ̂︀𝑐𝑡.
∙ Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙) → ̂︀𝑐𝑡. The evaluation algorithm is a deterministic

algorithm and is given a circuit 𝒞 along with 𝑙 expanded ciphertext, and outputs

an evaluated ciphertext ̂︀𝑐𝑡.
∙ PartDec(𝑠𝑘𝑖, 𝑐𝑡) → 𝑝𝑖: The partial decryption algorithm, given a party’s secret

key share and a ciphertext, will output a partial decryption 𝑝𝑖.

∙ FinDec({𝑝𝑖}, 𝑐𝑡) → 𝜇: The final decryption algorithm is a deterministic algo-

rithm where, given a set of partial decryptions associated with a ciphertext, will

output the plaintext associated with 𝑐𝑡 if the set of partial decryptions is a valid

set, then. Otherwise, output ⊥.

4.1 Threshold Multi-Key FHE from GSW

In this section, we present a construction of threshold multi-key FHE from the GSW

FHE scheme. This is a combination of [MW16] and [BGG+17], which was also in the

recent work of [BJMS18].

∙ Setup(1𝜆, 1𝑑) → params: This algorithm runs GSW.Setup(1𝜆, 1𝑑) to obtain ran-

dom matrix 𝐵 ∈ Z𝑛−1×𝑚
𝑞
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∙ Keygen(params)→ (𝑝𝑘𝑖, 𝑠𝑘𝑖): The key generation algorithm runs GSW.Setup(1𝜆, 1𝑑)

to obtain public key 𝐴 ∈ Z𝑛×𝑚
𝑞 and private key 𝑡 ∈ Z𝑛

𝑞 for the 𝑖𝑡ℎ party in the

multi-key FHE scheme.

∙ KeyShare(𝑠𝑘𝑖,A𝑖)→ (𝑠𝑘
(1)
𝑖 , . . . 𝑠𝑘

(𝑁)
𝑖 ) The key sharing uses the {0,1}-LSSS secret

sharing algorithm with input 𝑠𝑘𝑖 of the multi-key FHE scheme, and outputs

shares 𝑠𝑘(𝑗)
𝑖 ) to distribute to the 𝑁 parties.

∙ Encrypt(𝑝𝑘, 𝜇)→ 𝑐𝑡. The encryption algorithm runs GSW.Enc(𝑝𝑘, 𝜇).

∙ Expand((𝑝𝑘1, . . . , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡)→ ̂︀𝑐𝑡. The expansion algorithm, given a fresh GSW

ciphertext 𝑐𝑡, runs MFHE.Expand((𝑝𝑘1, . . . , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡) and outputs ̂︀𝑐𝑡.
∙ Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙)→ ̂︀𝑐𝑡. The evaluation algorithm runs

MFHE.Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙)
and outputs an evaluated ciphertext ̂︀𝑐𝑡.
∙ PartDec(𝑠𝑘

(𝑗)
𝑖 , 𝑐𝑡)→ 𝑝𝑖: The partial decryption algorithm, runsMFHE.PartDec(𝑠𝑘

(𝑗)
𝑖 , 𝑐𝑡)

and outputs a partial decryption 𝑝
(𝑗)
𝑖 .

∙ FinDec({𝑝(𝑗)𝑖 }, 𝑐𝑡)→ 𝜇: The final decryption algorithm runs tFHE.FinDec({𝑝(𝑗)𝑖 }, 𝑐𝑡)

and outputs 𝜇 if the set of shares is in the access structure.

We will now analyze the correctness and security of the protocol. From a high level,

the correctness of the protocol is maintained when the noise from the FHE evaluation

and partial decryptions do not affect the correctness of the final decryption. The

security of the protocol is a series of hybrid arguments.

4.1.1 Correctness

Consider an expanded multi-key FHE which has been evaluated on a depth < 𝑑

circuit. We will now show that for set of partial decryptions that forms a valid set

within the access structure, the final decryption algorithm will output the correct 𝜇.
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More formally, to decrypt ̂︀𝐶 we first parse it to consist of 𝑁 sub-matrices ̂︀𝐶(𝑖) ∈

Z𝑛×𝑚𝑁
𝑞 such that

̂︀𝐶 =

⎡⎢⎢⎢⎣
̂︀𝐶(1)

...̂︀𝐶(𝑁)

⎤⎥⎥⎥⎦
.

Recall that the partial decryption in the threshold multi-key FHE scheme consists

of

𝑝𝑖 = 𝑡𝑖 ̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒𝑠𝑚𝑖

In our threshold multi-key FHE scheme, a partial decryption of the 𝑖𝑡ℎ sub-matrix

in the ciphertext, using party 𝑗’s secret key share, is

𝑝
(𝑗)
𝑖 = 𝑡

(𝑗)
𝑖

̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒𝑠𝑚𝑖

Where 𝑡(𝑗)𝑖 is the 𝑠𝑘(𝑗)
𝑖 and 𝑒𝑠𝑚𝑖

$← [−𝐵𝑑𝑒𝑐, 𝐵𝑑𝑒𝑐] is some random smudging noise to

mask 𝑡
(𝑗)
𝑖 .

The final decryption in the threshold multi-key FHE scheme would be as follows.

First, for every 𝑖, we wish to find a set of 𝑝(𝑗)𝑖 such that they form a valid access set

for reconstructing 𝑝𝑖 = 𝑡𝑖 ̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒′𝑖. We can subsequently define

𝑝𝑖 =
∑︁
𝑗

𝑝
(𝑗)
𝑖

as the reconstruction coefficient from the {0,1}-LSSS is binary. Finally, we define

𝑝 =
∑︁
𝑖

𝑝𝑖

and output 𝜇 = 0 if 𝑝 ∈ [−⌊ 𝑞
4
⌉, ⌊ 𝑞

4
⌉] and 𝜇 = 1 otherwise.

We see that
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∑︁
𝑖∈[𝑁 ]

𝑝𝑖 =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈A𝑖

𝑝
(𝑗)
𝑖

=
∑︁
𝑖∈[𝑁 ]

𝑡𝑖 ̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) +

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈A𝑖

𝑒
(𝑗)
𝑖

= ̂︀𝑡 ̂︀𝐶̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒𝑠𝑚

= 𝜇⌈𝑞/2⌉+ 𝑒′ + 𝑒𝑠𝑚

Where 𝑒𝑠𝑚 =
∑︀

𝑖∈[𝑁 ]

∑︀
𝑗∈A𝑖

𝑒
(𝑗)
𝑖 . From the correctness of multi-key FHE’s partial

decryption, shown in previous sections, we know that |𝑒𝑠𝑚| ≤ 𝑁𝐵𝑑𝑒𝑐
𝑠𝑚𝑑𝑔 = 2𝑂(𝑑𝜆 log 𝜆)𝐵𝜒

and 𝑒′ = 𝑒 ̂︀𝐺−1( ̂︀𝑤𝑇 ) has norm |𝑒′| ≤ 𝛽′
𝑓𝑖𝑛𝑎𝑙𝑚𝑁 = 2𝑂(𝑑 log 𝜆)𝐵𝜒. Since we know that

𝑞 = 2𝜔(𝑑𝜆 log 𝜆)𝐵𝜒, we see that |𝑒′ + 𝑒𝑠𝑚| < 𝑞/4 and correctness holds [MW16].

4.1.2 Security

The security of the threshold multi-key FHE scheme can be proved by the following

hybrid arguments. Assume there exists a set of {𝑝𝑖} shares that do not form an

authorized set. We wish to show that no adversary can learn any information about

the underlying encryption from the partial shares, and no adversary learns information

about the secret key shares either.

∙ Hybrid 0: This hybrid is the “real” threshold multi-key FHE scheme, with an

unauthorized set of partial shares {𝑝𝑖}.

∙ Hybrid 1: This hybrid is the same as hybrid 0, except the partial decryptions

are sampled uniformly at random.

∙ Hybrid 2: This hybrid is the same as hybrid above, except the secret key

shares that are generated are with respect to 0 rather than 𝑠𝑘𝑖.

∙ Hybrid 3: This hybrid is the same as hybrid above, except the encryptions

contain encryptions of 0 rather than 𝑚𝑖.
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Hybrid 0 and Hybrid 1 are computationally indistinguishable from each other from

the learning with errors (LWE) assumption. Specifically, we see that the following

two distributions are computationally indistinguishable:

( ̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤), 𝑝

(𝑗)
𝑖 = 𝑡

(𝑗)
𝑖

̂︀𝐶(𝑖)̂︂𝐺−1
𝑁 ( ̂︀𝑤) + 𝑒𝑠𝑚𝑖 ) ≈𝑐 ( ̂︀𝐶(𝑖)̂︂𝐺−1

𝑁 ( ̂︀𝑤), 𝑝′(𝑖) = 𝑢(𝑖))

Hybrid 1 and Hybrid 2 are statistically indistinguishable from the information the-

oretic security of the folklore secret sharing scheme. Due to having an unauthorized

set of partial decryptions, the distribution of 𝑝𝑖 shares are statistically indistinguish-

able from if the secret key shares were shares of 0.

Hybrid 2 and Hybrid 3 are computationally indistinguishable, due to the semantic

security of the underlying encryption scheme. Since both the secret key shares and the

partial decryptions are simulated, and the underlying FHE scheme is computationally

indistinguishable, the adversary cannot distinguish between an encryption of 0 and

an encryption of 1.

4.2 Threshold Multi-Key FHE from NTRU

In this section, we present a modification of the NTRU multi-key FHE scheme in

[LTV13] such that we can now do a 𝑡-of-𝑁 partial decryption instead of the 𝑁 -of-𝑁

decryption as in the original multi-key FHE scheme. While in the NTRU scheme,

decryption requires a product of the secret keys multipled by the ciphertext, our

modification involves running a two-round MPC protocol to obtain secret shares such

that the sum of the partial decryptions (consisting of the products of the ciphertexts

and the secret key shares) is able to be used to obtain the underlying message.

∙ Keygen(params)→ (𝑝𝑘𝑖, 𝑠𝑘𝑖): The key generation algorithm runs NTRU.Setup(1𝜆, 1𝑑)

to obtain public key ℎ = [2𝑔𝑓−1]𝑞 ∈ R𝑞 and private key 𝑓 ∈ 𝑅𝑞 for the 𝑖𝑡ℎ party

in the multi-key FHE scheme.
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∙ KeyShare((𝑠𝑘1, . . . 𝑠𝑘𝑁),A) → (𝑠𝑘(1), . . . 𝑠𝑘(𝑁)) The key sharing uses the {0,1}-

LSSS secret sharing algorithm with inputs 𝑠𝑘1, . . . 𝑠𝑘𝑁 of the multi-key FHE

scheme, and outputs shares 𝑠𝑘(𝑗)) to distribute to the 𝑁 parties. Since we wish

to obtain secret key shares 𝑠𝑘(𝑗) such that
∑︀

𝑗 𝑠𝑘
(𝑗) =

∏︀
𝑖 𝑠𝑘𝑖, we run a 2 Round

MPC such as [GS18].

∙ Encrypt(𝑝𝑘𝑖, 𝜇)→ 𝑐𝑡. The encryption algorithm runs NTRU.Enc(𝑝𝑘𝑖, 𝜇).

∙ Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙)→ ̂︀𝑐𝑡. The evaluation algorithm runs

NTRU.Eval(𝑝𝑎𝑟𝑎𝑚𝑠, 𝒞, ̂︁𝑐𝑡1, . . . ,̂︁𝑐𝑡𝑙)
and outputs an evaluated ciphertext ̂︀𝑐𝑡.
∙ PartDec(𝑠𝑘(𝑗), 𝑐𝑡)→ 𝑝(𝑗): Given a secret key share 𝑠𝑘(𝑗), the partial decryption

algorithm runs NTRU.Dec(𝑠𝑘(𝑗), 𝑐𝑡). In other words, we compute 𝑝(𝑗) = [𝑠𝑘(𝑗) ·

𝑐𝑡]𝑞 + 2𝑒 where 𝑒← 𝜒 is sampled from the error distribution.

∙ FinDec({𝑝(𝑗)}, 𝑐𝑡) → 𝜇: The final decryption algorithm is given a set of partial

shares {𝑝(𝑗)}, and for the shares 𝑝′(𝑗) that are in the access structure, let 𝑝 =∑︀
𝑗 𝑝

′(𝑗). The algorithm then outputs 𝑝 mod 2.

We will now show correctness and security for the threshold multi-key NTRU

scheme.

CorrectnessWe can assume the correctness of the 2-round MPC protocol, such that

with each party’s input as 𝑠𝑘𝑖, the MPC protocol outputs shares to each party 𝑗 as

𝑠𝑘(𝑗) such that
∑︀

𝑗 𝑠𝑘
(𝑗) =

∏︀
𝑖 𝑠𝑘𝑖.

Our protocol also assumes honest majority, and without loss of generality an odd

number of parties participate. Assume we have a ciphertext 𝑐𝑡 that is the evaluation of

ciphertexts 𝐶(𝑐𝑡1, . . . 𝑐𝑡𝑁) for 𝑁 parties. The final decryption algorithm is as follows:
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𝑝 =
∑︁
𝑗

𝑝(𝑗)

=
∑︁
𝑗

[𝑠𝑘(𝑗) · 𝑐𝑡]𝑞 + 2𝑒(𝑗)

=
∏︁
𝑖

[𝑠𝑘𝑖 · 𝑐𝑡]𝑞 +
∑︁
𝑗

2𝑒(𝑗)

= 2𝑒′ +
∏︁
𝑖

𝑠𝑘𝑖𝜇 + 2𝑒′′

where 2𝑒′ is the noise from the ciphertext in the NTRU encryption and 2𝑒′′ is the

noise from the partial decryption. We see that 𝑝 mod 2 = 𝜇 as long as the noise

incurred is minimal.

Security Security can be shown via a series of hybrid arguments, similar to the

argument in threshold multi-key FHE from GSW. Assume there exists a set of {𝑝𝑗}

shares that do not form an authorized set. We wish to show that no adversary can

learn any information about the underlying encryption from the partial shares, and

no adversary learns information about the secret key shares either.

∙ Hybrid 0: This hybrid is the “real” threshold multi-key FHE scheme, with an

unauthorized set of partial shares {𝑝𝑖}.

∙ Hybrid 1: This hybrid is the same as hybrid 0, except the partial decryptions

are sampled uniformly at random.

∙ Hybrid 2: This hybrid is the same as hybrid above, except the secret key

shares that are generated are with respect to 0 rather than 𝑠𝑘𝑖.

∙ Hybrid 3: This hybrid is the same as hybrid above, except the encryptions

contain encryptions of 0 rather than 𝑚𝑖.

Hybrid 0 and Hybrid 1 are computationally indistinguishable from each other

from the ring learning with errors (LWE) assumption. Specifically, we see that the

following two distributions are computationally indistinguishable:
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(𝑐𝑡, [𝑠𝑘𝑗 · 𝑐𝑡]𝑞 + 2𝑒(𝑗)) ≈𝑐 (𝑐𝑡, 𝑢(𝑗))

Hybrid 1 and Hybrid 2 are statistically indistinguishable from the information

theoretic security of the folklore secret sharing scheme, which can be generated from

a two-round information-theoretic MPC. Due to having an unauthorized set of partial

decryptions, the distribution of 𝑝𝑖 shares are statistically indistinguishable from if the

secret key shares were shares of 0.

Hybrid 2 and Hybrid 3 are computationally indistinguishable, due to the semantic

security of the underlying encryption scheme. Since both the secret key shares and the

partial decryptions are simulated, and the underlying FHE scheme is computationally

indistinguishable, the adversary cannot distinguish between an encryption of 0 and

an encryption of 1.

4.3 Decentralized FHE

In a decentralized fully homomorphic encryption scheme, 𝑛 parties wish to encrypt

data to a FHE scheme, such that a common public key is known to all, but no

individual party knows the secret key. In order to decrypt a ciphertext, parties

may perform a 𝑘-of-𝑛 decryption scheme as mentioned above in the threshold fully

homomorphic encryption setting. We note that due to a key homomorphic property

of secret and public keys in Lattice-based encryption schemes, we can realize this

construction.

The high level idea is that in the GSW public key

A :=

⎡⎣𝐵
𝑏

⎤⎦ ∈ Z𝑛×𝑚
𝑞

We see that if two parties generate 𝑏1 = 𝑠1𝐵 + 𝑒1, 𝑏2 = 𝑠2𝐵 + 𝑒2 ∈ Z1×𝑚,

encrypting under
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A′ :=

⎡⎣ 𝐵

𝑏1 + 𝑏2

⎤⎦ ∈ Z𝑛×𝑚
𝑞

would require the combined secret key (−(𝑠1 + 𝑠2), 1) to decrypt. However, out-

putting partial decryptions with respect to secret keys 𝑠1, 𝑠2 independently, and then

combining the partial decryptions, would also yield a correct decryption of a cipher-

text. This construction eliminates the ciphertext size dependency on the number of

parties; however it requires another round of setup before encryption can happen

since the public key, in which encryption is with respect to, is the dependent on the

sum of all the secret keys.

4.4 Comparison of Constructions

GSW MK-tFHE NTRU MK-tFHE
Decentralized
GSW FHE

Underlying Assumption LWE LWE RLWE
Semi-Honest Security
Round Complexity 2 3 3
Malicious Security
Round Complexity 3 3 3

Public Parameters Yes No Yes

Ciphertext Size 𝑂(1𝜆, 𝑁2) 𝑂(1𝜆, 𝑁 log𝑁) 𝑂(1𝜆)

Table 4.1: Comparison of multi-key threshold FHE schemes.

4.5 Applications to Multi Party Computation

Multi-party computation (MPC) is a cryptographic protocol in which 𝑛 mutually

distrustful parties compute a joint function of their private inputs without revealing

anything more than the output to each other [Yao86, GMW87].

There are many security settings for MPC. The two most commonly considered

setting is that of semi-honest security, where adversaries do not deviate from the pro-

tocol but will learn information when given, and that of malicious security where an
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adversary corrupts a subset of parties who can deviate arbitrarily from the protocol.

We also consider the setting of fairness, where corrupted parties receive their out-

put only if all honest parties receive output, and guaranteed output delivery, where

corrupted parties cannot prevent honest parties from receiving their output [Cle86].

In the guaranteed output delivery setting, we may assume that parties may become

offline (resulting from a network partition, for example) and are not available for the

entire duration of the computation. This may happen either by a malicious adversary

in the malicious setting, or non-maliciously in the semi-honest setting.

[GLS15] proved that there cannot be a two-round MPC with honest majority

and guaranteed output delivery in the malicious setting. Assuming LWE, one can

construct a three-round (round-optimal) MPC with honest majority and guaranteed

output delivery in the malicious setting, if we use NIZKs to account for malicious

adversaries. Concurrent work include [BJMS18, ACGJ18].

4.5.1 Low Round MPC

While feasibility results for multi party computation have existed since [BOGW88,

GMW87], recent research in MPC has focused on low-round constructions.

[BL18] and [GS18] construct two-round MPCs from oblivious transfer. In the

honest majority setting, [ABT18] construct information-theoretic two-round MPC in

the semi-honest setting. Their construction is based on extending randomized poly-

nomials with degree 3 [IK02], to a multi party randomized polynomial with effective

degree 2.

Through threshold multi-key FHE (under the LWE assumption), we can construct

a two round MPC with guaranteed output delivery in the semi-honest setting, and

a three-round MPC with guaranteed output delivery in the malicious setting. In the

malicious setting we will require the assumption of non-interactive zero knowledge

proofs (NIZKs). There are currently no constructions of NIZKs from LWE, though

there is recent progress in this direction [RSS18, CLW18].
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Two-Round Guaranteed Output Delivery MPC with Semi-Honest

adversaries

∙ Round 1: Each party 𝑃𝑖 does the following:

– Run tmFHE.KeyGen(1𝜆) to obtain (𝑝𝑘(𝑖), 𝑠𝑘(𝑖))

– Encrypt private input as 𝑐(𝑖) ← tmFHE.Enc(𝑝𝑘(𝑖), 𝑥(𝑖)).

– Run (𝑠𝑘
(𝑖)
1 , . . . 𝑠𝑘

(𝑖)
𝑛 ← tmFHE.KeyShare(𝑠𝑘𝑖,A) for access structure A.

– For each party 𝑗, send 𝑠𝑘
(𝑖)
𝑗 , 𝑐(𝑖).

∙ Round 2: Each party 𝑃𝑖 does the following:

– After receiving 𝑐(𝑗) and the secret key shares from the other parties, each
party computes 𝑐′ ← tmFHE.Eval(𝑐(1), . . . 𝑐(𝑛), 𝑓)

– For the parties that participate in the threshold decryption process, let
𝑝
(𝑖)
1 , . . . 𝑝

(𝑖)
𝑘 be the outputs of tmFHE.PartDec(𝑠𝑘

(𝑖)
1 , . . . 𝑠𝑘

(𝑖)
𝑘 , 𝑐′) for corre-

sponding secret key shares.

– Output 𝑝(𝑖)1 , . . . 𝑝
(𝑖)
𝑘

∙ Computation after Round 2

– Upon receiving the broadcasts of all 𝑝
(𝑖)
𝑗 partial decryptions, run

tmFHE.FinDec(B) where 𝐵 = {𝑝(𝑗)𝑖 }, to obtain 𝜇 if 𝐵 is within the ac-
cess structure, or ⊥ otherwise.

Figure 4-1: A two round MPC with guaranteed output delivery.

4.5.2 Two Round MPC with Guaranteed Output Delivery in

Semi-Honest Setting

In this subsection, we detail a construction of a two round MPC with Guaranteed

Output Delivery, in which concurrent work was done by [BJMS18]. The input to an

MPC consists of 𝑛 parties, each with their private input 𝑥𝑖, and a function 𝑓 that the

parties wish to compute. The output of the MPC is 𝑓(𝑥1, . . . 𝑥𝑛) for all 𝑛 parties. A

two round MPC with guaranteed output delivery is presented in figure 4-1. Assuming

that public parameters have been set up prior, we obtain a two round MPC; otherwise

a third round would be needed prior to the MPC to set up the public parameters.
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Correctness Correctness follows from the correctness of the underlying threshold

multi-key FHE scheme derived from the GSW FHE. Because we see that tmFHE.Eval

will compute 𝑥 = 𝑓(𝑥1, . . . 𝑥𝑛) correctly, and that given a valid access structure

tmFHE.PartDec and tmFHE.FinDec will decrypt 𝑥 correctly.

Security From a high level, the security of this MPC also follows from the security

of the underlying threshold multi-key FHE scheme derived from GSW FHE. Assume

that after the second round of computation, there is no valid set of parties within the

access structure who are still online. From the security of the threshold multi-key

FHE scheme (and the underlying secret sharing scheme), it is not possible to decrypt

𝑐′. In other words, the information-theoretic security of the secret sharing scheme

provides the security when the output shares are not within the access structure.

4.5.3 Three Round MPC with Guaranteed Output Delivery

in Malicious Setting

In this subsection, we present a three round MPC with guaranteed output delivery

with malicious adversaries. Our scheme relies on the LWE assumption to construct

threshold multi-key FHE, NIZKs, and a honest majority of parties. The scheme is

presented in figure 4-2.

We assume the familiarity with a NIZK scheme, which consists of algorithms

Gen,Prove,Verify. From a high level, Gen → 𝑐𝑟𝑠 outputs a common reference string,

Prove(𝑐𝑟𝑠, 𝑦𝑖, (𝑥𝑖, 𝑟𝑖)) → 𝜋𝑖 takes in input 𝑥𝑖, randomness 𝑟𝑖, and statement 𝑦𝑖, to

generate a proof 𝜋𝑖. Verify(𝑐𝑟𝑠, 𝑦𝑖, 𝜋𝑖) → {0, 1} verifies whether the statement 𝑦𝑖 is

consistent with proof 𝜋𝑖.

Correctness Correctness follows from the correctness of the underlying threshold

multi-key FHE scheme derived from the GSW FHE, and the proof is the same as in the

semi-honest setting. Because we see that tmFHE.Eval will compute 𝑥 = 𝑓(𝑥1, . . . 𝑥𝑛)

correctly, and that given a valid access structure tmFHE.PartDec and tmFHE.FinDec

will decrypt 𝑥 correctly. Parties that compute a NIZK proof Π correctly will have their

proof verified, and thus other parties will accept their shares and partial decryptions
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Three-Round Guaranteed Output Delivery MPC with Malicious

adversaries

∙ Round 1: Each party 𝑃𝑖 does the following:

– Run tmFHE.Setup(1𝜆) jointly to generate the public parameters

– Run NIZK.Gen(1𝜆)→ 𝑐𝑟𝑠𝑖 to generate common reference string.

– Output the public parameters and 𝑐𝑟𝑠𝑖.

∙ Round 2: Each party 𝑃𝑖 does the following:

– Run tmFHE.KeyGen(1𝜆) to obtain (𝑝𝑘(𝑖), 𝑠𝑘(𝑖))

– Encrypt private input as 𝑐(𝑖) ← tmFHE.Enc(𝑝𝑘(𝑖), 𝑥(𝑖)).

– Run (𝑠𝑘
(𝑖)
1 , . . . 𝑠𝑘

(𝑖)
𝑛 ← tmFHE.KeyShare(𝑠𝑘𝑖,A) for access structure A.

– In addition, generate proofs NIZK.Prove(𝐶𝑅𝑆, 𝑦, (𝑥, 𝑟)) → 𝜋
(𝑖)
𝑗 showing

that 𝑐(𝑖) and secret shares 𝑠𝑘(𝑖)
𝑗 were generated correctly.

– For each party 𝑗, send 𝑠𝑘
(𝑖)
𝑗 , 𝑐(𝑖), 𝜋

(𝑖)
𝑗 .

∙ Round 3: Each party 𝑃𝑖 does the following:

– After receiving 𝑐(𝑗) and the secret key shares 𝑠𝑘
(𝑗)
𝑖 from the other par-

ties, first from 𝜋
(𝑗)
𝑖 verify that the ciphertexts and secret key shares

were generated correctly. If NIZK.Ver(𝑦𝑖, 𝜋𝑖) → 1, each party computes
𝑐′ ← tmFHE.Eval(𝑐(1), . . . 𝑐(𝑛), 𝑓)

– For the parties that participate in the threshold decryption process, let
𝑝
(𝑖)
1 , . . . 𝑝

(𝑖)
𝑘 be the outputs of tmFHE.PartDec(𝑠𝑘

(𝑖)
1 , . . . 𝑠𝑘

(𝑖)
𝑘 , 𝑐′) for corre-

sponding secret key shares.

– In addition, generate proofs NIZK.Prove(𝐶𝑅𝑆, 𝑦, (𝑥, 𝑟)) → 𝜋′(𝑖) showing
that the partial decryptions were generated correctly.

– Output 𝑝(𝑖)1 , . . . 𝑝
(𝑖)
𝑘 , 𝜋′(𝑖)

∙ Computation after Round 3

– Upon receiving the broadcasts of all 𝑝(𝑖)𝑗 partial decryptions, let 𝐵 = {𝑝(𝑗)𝑖 }
such that the corresponding NIZK.Ver(𝑝

(𝑗)
𝑖 , 𝜋′(𝑗)) = 1.

– Run tmFHE.FinDec(B) to obtain 𝜇 if 𝐵 is within the access structure, or
⊥ otherwise.

Figure 4-2: A three round MPC with guaranteed output delivery.
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to output the correct 𝜇.

Security From a high level, the security of this MPC also follows from the security

of the underlying threshold multi-key FHE scheme derived from GSW FHE. Assume

that after the second round of computation, there is no valid set of parties within the

access structure who are still online. From the security of the threshold multi-key

FHE scheme (and the underlying secret sharing scheme), it is not possible to decrypt

𝑐′. In other words, the information-theoretic security of the secret sharing scheme

provides the security when the output shares are not within the access structure.

The security against malicious adversaries derives from the NIZK proofs. While

malicious adversaries may deviate arbitrarily from the protocol, the verify algorithm

of the NIZK will not pass if the ciphertext, secret share, or partial decryption was

generated inconsistently.
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Chapter 5

Predicate & Functional Encryption

A recently introduced paradigm is that of functional encryption, which is a general-

ization of classical definitions of encryption. Functional encryption can be thought

of as a superclass of public-key encryption, such that there are restricted secret keys

such that a keyholder may learn a specific function of the encrypted data, but nothing

else [BSW11, ABB10, ABV+12].

In attribute-based encryption, a ciphertext 𝑐𝑡 of 𝜇 is associated with a public

set of attributes 𝑦. The secret key associated is associated with a predicate 𝐶, and

decryption succeeds if 𝐶(𝑦) = 1.

In predicate encryption, a ciphertext 𝑐𝑡 of 𝜇 is associated with a private set of

attributes 𝑥. The secret key associated is associated with a predicate 𝐶, and decryp-

tion succeeds if 𝐶(𝑥) = 1. There is the additional security requirement that nothing

is learned about (𝑥, 𝜇) if the ciphertext cannot be decrypted.

In a way, we can think of attribute-based encryption (ABE) as a subclass of predi-

cate encryption (PE), while predicate encryption is a subclass of functional encryption

(FE).

In this section, we present the definitions for predicate encryption and also show a

new construction of a threshold predicate encryption scheme. Our construction builds

off of the predicate encryption scheme of [GVW15], which preserves compactness.

However, it is not immediately clear how to convert this predicate encryption scheme

to a functional encryption, because the predicate encryption is not attribute-hiding,
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in that a decryption of 𝑐𝑡 leaks information about 𝑥.

5.1 Partially-Hiding Predicate Encryption

In order to define the Predicate Encryption scheme in [GVW15], we refer to an inter-

mediate construction known as partially hiding predicate encryption. This encryption

scheme is a hybrid of attribute-based encryption, and predicate encryption, in that

each ciphertext is associated with attributes (𝑥, 𝑦), where 𝑥 is private but 𝑦 is publicly

known. We present a definition and construction below:

Definition 19 (Partially-Hiding Predicate Encryption). A partially-hiding predicate

encryption scheme is a series of PPT algorithms (Setup,KeyGen,Enc,Dec) defined as

follows:

∙ Setup(1𝜆) → (𝑚𝑝𝑘,𝑚𝑠𝑘): The setup algorithm takes the security parameter 𝜆

as input and outputs the public parameter 𝑚𝑝𝑘 and master secret key 𝑚𝑠𝑘.

∙ KeyGen(𝑚𝑠𝑘,𝐶) → 𝑠𝑘𝐶: The key generation algorithm takes in the master

secret key 𝑚𝑠𝑘 as input, and a predicate 𝐶 ∈ 𝒞, and outputs a secret key 𝑠𝑘𝐶.

∙ Enc(𝑚𝑝𝑘, ((𝑥, 𝑦), 𝜇))→ 𝑐𝑡: The encryption algorithm takes in the master public

key 𝑚𝑝𝑘, and a message 𝜇, and outputs a ciphertext 𝑐𝑡 with public attributes 𝑦

and public attributes 𝑥.

∙ Dec(𝑠𝑘𝐶 , 𝑐𝑡)→ 𝜇: The decryption algorithm takes in secret key 𝑠𝑘𝐶 along with

a public predicate 𝐶, and outputs either the decryption of 𝑐𝑡, 𝜇, or ⊥.

The intuition behind using a partially-hiding predicate encryption scheme is that

the family of circuits allowed to be computed in this scheme consists of all circuits

on public attribute 𝑦, and only the inner product on private attribute 𝑥. If we allow

the public attribute to be a FHE encryption of attributes, and the private attribute

to be the secret key of the FHE encryption, then because FHE decryption is an inner

product operation, we can achieve predicate encryption for all circuits.
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More specifically, we define the class of functions for the partially-hiding predicate

encryption scheme as 𝐶 : Z × {0, 1}𝑙 → {0, 1} of the form 𝐶 ∘ IP𝛾 where 𝐶 is depth

𝑑, and

(𝐶 ∘ IP𝛾)(𝑥, 𝑦) = IP𝛾(𝑥,𝐶(𝑦))

where IP𝛾(𝑥, 𝑧) = 1 if and only if ⟨𝑥, 𝑧⟩ = 𝛾 mod 𝑞.

The construction of a partially-hiding predicate encryption scheme, as defined in

[GVW15] is as follows, where we assume the message space consists of a single bit,

and the length of the secret attribute is 𝑡, the length of the public attribute is 𝑙, and

the circuit depth bound is 𝑑:

∙ PH.Setup(1𝜆, 1𝑡, 1𝑙, 1𝑑)→ (𝑚𝑝𝑘,𝑚𝑠𝑘): The setup algorithm is as follows:

– First, choose random matrices 𝐴𝑖 ∈ Z𝑛×𝑚
𝑞 for 𝑖 ∈ [𝑙], 𝐵𝑖 ∈ Z𝑛×𝑚

𝑞 for 𝑖 ∈ [𝑡],

and 𝑃 ∈ Z𝑛×𝑚
𝑞 .

– Sample a matrix with associated trapdoor (𝐴, 𝑇 )← TrapGen(1𝑚, 1𝑛, 𝑞)

– Output the master public key 𝑚𝑝𝑘 = ({𝐴𝑖}, {𝐵𝑖}, 𝐴, 𝑃 ) and the master

secret key is 𝑚𝑠𝑘 = 𝑇 .

∙ PH.KeyGen(𝑚𝑠𝑘,𝐶)→ 𝑠𝑘𝐶 : The key generation algorithm takes in the master

secret key 𝑚𝑠𝑘 as input, and a predicate 𝐶 ∈ 𝒞, and outputs a secret key

𝑠𝑘𝐶 = 𝑅 ∈ Z2𝑚×𝑚
𝑞 as follows:

– Let 𝐴𝐶∘IP𝛾
← Evalpk({𝐴𝑖}, {𝐵𝑖}, 𝐶 ∘ IP)

– Sample 𝑅 ∈ Z2𝑚×𝑚
𝑞 such that [𝐴|𝐴𝐶∘IP + 𝛾 ·𝐺] ·𝑅 = 𝑃 mod 𝑞, where we

sample 𝑅 via

𝑅← SampleLeft(𝐴,𝐴𝐶∘IP𝛾
+ 𝛾 ·𝐺, 𝑇, 𝑃, 𝑠)

And output 𝑅 as 𝑠𝑘𝐶 .

∙ PH.Enc(𝑚𝑝𝑘, ((𝑥, 𝑦), 𝜇))→ 𝑐𝑡: The encryption algorithm is as follows:
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– Choose a secret vector 𝑠← 𝜒𝑛 and error terms 𝑒, 𝑒′ ← 𝜒𝑚

– Let 𝑏 = [0, . . . 0, ⌈𝑞/2⌉𝜇]𝑇 ∈ Z𝑚
𝑞 . Compute

𝛽0 = 𝐴𝑇 𝑠 + 𝑒, 𝛽1 = 𝑃 𝑇 𝑠 + 𝑒′ + 𝑏

– For all 𝑖 ∈ [𝑙], let 𝑢𝑖 = (𝐴𝑖 + 𝑦[𝑖] ·𝐺+𝑅𝑇
𝑖 𝑒) where 𝑅𝑖 ← {−1, 1}𝑚×𝑚. This

is to encode the public attributes.

– For all 𝑖 ∈ [𝑡], let 𝑣𝑖 = (𝐵𝑖 +𝑥[𝑖] ·𝐺+𝑅′𝑇
𝑖 𝑒) where 𝑅′

𝑖 ← {−1, 1}𝑚×𝑚. This

is to encode the private attributes.

– Finally, output ciphertext

𝑐𝑡 =
(︁
{𝑢𝑖}𝑖∈[𝑙], {𝑣𝑖}𝑖∈[𝑡], 𝛽0, 𝛽1

)︁
∙ PH.Dec(𝑠𝑘𝐶 , 𝑐𝑡)→ 𝜇: The decryption algorithm is as follows:

– First, compute

𝑢𝐶∘IP ← Evalct({𝐴𝑖, 𝑢𝑖}, {𝐵𝑖, 𝑣𝑖}, 𝐶 ∘ IP, 𝑦)

where we see 𝑢𝐶∘IP ≈ (𝐴𝐶∘IP + 𝜌𝐺)𝑇 𝑠 + 𝑒 for some 𝜌 ∈ Z𝑞

– Next, compute

𝜂 = 𝛽1 −𝑅𝑇 ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ ∈ Z𝑚
𝑞

If the first 𝑚 − 1 terms in the vector 𝜂 satisfy |𝜂[𝑖]| < 𝑞/4, then output

𝜇 = 0 if |𝜂[𝑚]| < 𝑞/4, and 𝜇 = 1 otherwise.

Correctness and security of this scheme is shown in [GVW15].

Refer to the auxiliary algorithms Evalpk and Evalct in [GVW15]. From a high level,

the auxiliary algorithms have the properties as follows:
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∙ Evalpk takes in 𝑙 matrices 𝐴1, . . . 𝐴𝑙 ∈ Z𝑛×𝑚
𝑞 and a predicate 𝐶 : {0, 1}𝑙 → {0, 1},

and outputs a matrix 𝐴𝐶 ∈ Z𝑛×𝑚
𝑞 . We have the property that if (𝐴1, . . . 𝐴𝑙) =

(𝐴𝑅1 − 𝑦[1] · 𝐺, . . . , 𝐴𝑅𝑙 − 𝑦[𝑙] · 𝐺) where 𝑅1, . . . 𝑅𝑙 are small-norm matrices,

then

𝐴𝐶 = 𝐴𝑅𝐶 − 𝐶(𝑦) ·𝐺

where 𝑅𝐶 is a small norm-matrix with a 𝑛2𝑑 multiplicative blow-up.

∙ Evalct takes in 𝑙 matrices 𝐴1, . . . 𝐴𝑙 ∈ Z𝑛×𝑚
𝑞 and a predicate 𝐶 : {0, 1}𝑙 →

{0, 1} as above. In addition, it takes in public attribute 𝑦 ∈ {0, 1}𝑙 and 𝑙

vectors 𝑢1, . . . 𝑢𝑙 ∈ Z𝑚
𝑞 and outputs a vector 𝑢𝐶 ∈ 𝑏𝑏𝑍𝑚

𝑞 . If the inputs satisfy

(𝑢1, . . . 𝑢𝑙) ≈ ((𝐴1 − 𝑦[1] ·𝐺)𝑇 𝑠, . . . , (𝐴𝑙 − 𝑦[𝑙] ·𝐺)𝑇 𝑠), then

𝑢𝐶 ≈ (𝐴𝐶 + 𝐶(𝑦) ·𝐺)𝑇 𝑠

.

5.2 Predicate Encryption

Having defined partially hiding predicate encryption, we have the building blocks to

construct a predicate encryption scheme from LWE. From a high level, the predicate

encryption scheme is constructed as follows:

∙ First, we are given a FHE scheme satisfying the definitions above ℱℋℰ =

(HE.KeyGen, HE.Enc, HE.Eval, HE.Dec) such that 𝑙 is the size of the initial ci-

phertext encrypting 𝑘 bit messages and 𝑡 is the size of the FHE scret key.

∙ We are given a partially hiding predicate encryption scheme

𝒫ℋ𝒫ℰ = (PH.Setup, PH.Keygen, PH.Enc, PH.Dec)
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for the class of predicates 𝒞𝑃𝐻𝑃𝐸 boinded by some depth parameter 𝑑′ =

poly(𝑑, 𝜆, log 𝑞)

∙ Combining these two schemes, we obtain a predicate encryption scheme where

the public portion of the PHPE attribute can be a FHE encryption of the

attribute, and the private portion of the PHPE attribute is the corresponding

FHE secret key.

We present a formal definition of predicate encryption:

Definition 20 (Predicate Encryption). A predicate encryption scheme is a series of

PPT algorithms (Setup,KeyGen,Enc,Dec) defined as follows:

∙ Setup(1𝜆) → (𝑚𝑝𝑘,𝑚𝑠𝑘): The setup algorithm takes the security parameter 𝜆

as input and outputs the public parameter 𝑚𝑝𝑘 and master secret key 𝑚𝑠𝑘.

∙ KeyGen(𝑚𝑠𝑘,𝐶) → 𝑠𝑘𝐶: The key generation algorithm takes in the master

secret key 𝑚𝑠𝑘 as input, and a predicate 𝐶 ∈ 𝒞, and outputs a secret key 𝑠𝑘𝐶.

∙ Enc(𝑚𝑝𝑘, (𝑥, 𝜇))→ 𝑐𝑡: The encryption algorithm takes in the master public key

𝑚𝑝𝑘, and a message 𝜇, and outputs a ciphertext 𝑐𝑡 with attributes 𝑥.

∙ Dec(𝑠𝑘𝐶 , 𝑐𝑡)→ 𝜇: The decryption algorithm takes in secret key 𝑠𝑘𝐶 along with

a public predicate 𝐶, and outputs either the decryption of 𝑐𝑡, 𝜇, or ⊥.

We first define the construction of predicate encryption from [GVW15], which is as

follows:

∙ PE.Setup(1𝜆, 1𝑘, 1𝑑): The setup algorithm takes in a security parameter 𝜆, at-

tribute length 𝑘, predicate depth bound 𝑑, and generates a master public and

secret key pair (𝑚𝑝𝑘,𝑚𝑠𝑘) as follows:

1. Run the partially-hiding predicate encryption scheme to obtain

(𝑝ℎ.𝑚𝑝𝑘, 𝑝ℎ.𝑚𝑠𝑘)← 𝑃𝐻.𝑆𝑒𝑡𝑢𝑝(1𝜆, 1𝑡, 1𝑙, 1𝑑′)
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where for 𝑘-bit messages and depth 𝑑 circuits, 𝑡 is the length of the FHE

secret key, 𝑙 is the bit-length of the initial FHE ciphertext, and 𝑑′ is the

bound on the FHE evaluation circuit.

2. Let (𝑚𝑝𝑘 = 𝑝ℎ.𝑚𝑝𝑘,𝑚𝑠𝑘 = 𝑝ℎ.𝑚𝑠𝑘)

∙ PE.KeyGen(𝑚𝑠𝑘,𝐶): The key generation algorithm takes as input the master

secret key, and a predicate 𝐶. It outputs the secret key 𝑠𝑘𝐶 associated with the

predicate as follows:

1. Let 𝐶(·) = 𝐻𝐸.𝐸𝑣𝑎𝑙(·, 𝐶), and let (𝐶 ∘ IP𝛾) be the predicates for 𝛾 =

⌊𝑞/2⌋ −𝐵, . . . , ⌊𝑞/2⌋+ 𝐵 for error bound 𝐵.

2. For all 𝛾 = ⌊𝑞/2⌋ −𝐵, . . . , ⌊𝑞/2⌋+ 𝐵, compute

𝑠𝑘𝐶·IP𝛾
← PH.Keygen(𝑝ℎ.𝑚𝑠𝑘, 𝐶 · IP𝛾)

3. Output the secret key set as 𝑠𝑘𝐶 = ({𝑠𝑘𝐶·IP𝛾
}𝛾=⌊𝑞/2⌋−𝐵,...,⌊𝑞/2⌋+𝐵)

∙ PE.Enc(𝑚𝑝𝑘, (𝑎, 𝜇)) The encryption algorithm takes as input the master public

key, and a message 𝜇 ∈ {0, 1} with input attribute vector 𝑎 ∈ {0, 1}𝑘, and

proceeds as follows:

1. Sample a fresh FHE secret key fhe.sk ∈ Z𝑡
𝑞 through FHE key generation.

2. Encrypt the input attribute vector to obtain fhe.ct ← HE.Enc(fhe.sk, 𝑎) ∈

{0, 1}𝑙.

3. Compute the PHPE ciphertext ctfhe.ct ← PE.Enc(mpk, (fhe.sk, fhe.ct), 𝜇)

4. The output ciphertext is ct = (ctfhe.ct, fhe.ct)

∙ PE.Dec((𝑠𝑘𝐶 , 𝐶), 𝑐𝑡) The decryption algorithm is as follows. Given the secret

key for a function 𝑠𝑘𝐶 and the corresponding predicate 𝐶, along with the ci-

phertext ct, if there exists a 𝛾 such that 𝛾 ∈ {⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+ 𝐵} and

PH.Dec((𝑠𝑘𝐶·IP𝛾
, 𝐶 · IP𝛾), (ctfhe.ct, fhe.ct)) = 𝜇 ̸=⊥
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then output 𝜇. Otherwise, output 𝛾.

5.3 Threshold Predicate Encryption

As noted above, a predicate encryption scheme has four algorithms, Setup,KeyGen,Enc,Dec.

In this section, we present a way to make the decryption algorithm a distributed pro-

cedure. In the following sections, we also present ideas to make setup and keygen a

distributed procedure.

In this section, we modify the construction of predicate encryption to attain a

threshold predicate encryption scheme. Assuming 𝑁 parties are participating, with a

𝑘-of-𝑁 access structure, from any 𝑘 parties outputting partial decryptions using their

secret key shares, the final decryption can recover the underlying message from the

ciphertext.

We define threshold predicate encryption as follows:

Definition 21 (Threshold Predicate Encryption). A predicate encryption scheme is

a series of PPT algorithms Setup,KeyGen,Enc,Dec defined as follows:

∙ Setup(1𝜆) → (𝑚𝑝𝑘,𝑚𝑠𝑘): The setup algorithm takes the security parameter 𝜆

as input and outputs the public parameter 𝑚𝑝𝑘 and master secret key 𝑚𝑠𝑘.

∙ KeyGen(𝑚𝑠𝑘,𝐶) → 𝑠𝑘𝐶: The key generation algorithm takes in the master

secret key 𝑚𝑠𝑘 as input, and a predicate 𝐶 ∈ 𝒞, and outputs a secret key 𝑠𝑘𝐶.

∙ KeyShare(𝑠𝑘𝐶 ,A)→ (𝑠𝑘
(1)
𝐶 , . . . 𝑠𝑘

(𝑁)
𝐶 ) The key sharing algorithm takes in a secret

key associated with a predicate, an access structure A and outputs a set of 𝑁

shares of the secret keys to distribute to the 𝑁 parties.

∙ Enc(𝑚𝑝𝑘, (𝑥, 𝜇))→ 𝑐𝑡: The encryption algorithm takes in the master public key

𝑚𝑝𝑘, and a message 𝜇, and outputs a ciphertext 𝑐𝑡 with attributes 𝑥.

∙ PartDec(𝑠𝑘
(𝑖)
𝐶 , 𝑐𝑡) → 𝑝𝑖: The partial decryption algorithm takes in secret key

share 𝑠𝑘
(𝑖)
𝐶 along with a public predicate 𝐶, and outputs a partial decryption 𝑝𝑖
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∙ FinDec({𝑝𝑖})→ 𝜇: The final algorithm takes in partial decryptions, and outputs

either the decryption of 𝑐𝑡, 𝜇, if the set of partial decryptions forms a valid set

in the access structure, or ⊥ otherwise.

We now show a construction of threshold predicate encryption from [GVW15, BGG+17].

∙ tPE.Setup(1𝜆)→ (𝑚𝑝𝑘,𝑚𝑠𝑘): The setup algorithm runs PE.Setup(1𝜆) to obtain

(𝑚𝑝𝑘,𝑚𝑠𝑘)

∙ tPE.KeyGen(𝑚𝑠𝑘,𝐶) → 𝑠𝑘𝐶 : The keygen algorithm runs PE.KeyGen(𝑚𝑠𝑘,𝐶)

to obtain 𝑠𝑘𝐶 .

∙ tPE.KeyShare(𝑠𝑘𝐶 ,A) → (𝑠𝑘
(1)
𝐶 , . . . 𝑠𝑘

(𝑁)
𝐶 ) The key sharing algorithm takes in

𝑠𝑘𝐶 = 𝑅 ∈ Z2𝑚×𝑚
𝑞 is a matrix, and an 𝑡-of-𝑁 threshold access structure. Using

the {0,1}-LSSS scheme, we can output shares (𝑠𝑘
(1)
𝐶 , . . . 𝑠𝑘

(𝑁)
𝐶 ) to each of the 𝑁

parties.

∙ tPE.Enc(𝑚𝑝𝑘, (𝑥, 𝜇))→ 𝑐𝑡: The encryption algorithm runs PE.Enc(𝑚𝑝𝑘, (𝑥, 𝜇))

to obtain 𝑐𝑡.

∙ tPE.PartDec(𝑠𝑘
(𝑖)
𝐶 , 𝑐𝑡)→ 𝑝𝑖: The partial decryption algorithm runs PE.Dec(𝑠𝑘(𝑖)

𝐶 , 𝑐𝑡)

to obtain partial decryption 𝑝𝑖. We know the ciphertext is in the form 𝑐𝑡 =(︁
{𝑢𝑖}𝑖∈[𝑙], {𝑣𝑖}𝑖∈[𝑡], 𝛽0, 𝛽1

)︁
. Where the {𝑣𝑖} consists of encodings of the FHE

secret key, while the {𝑢𝑖} consists of the encodings of the FHE encryption of

the attributes. First compute

𝑢𝐶∘IP ← Evalct({𝐴𝑖, 𝑢𝑖}, {𝐵𝑖, 𝑣𝑖}, 𝐶 ∘ IP, 𝑦)

Given that 𝑠𝑘
(𝑖)
𝐶 = 𝑅(𝑖) is a matrix, sample 𝑒(𝑖) ← 𝜒𝑚 from error distribution

and output

𝑅(𝑖) ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ + 𝑒(𝑖) ∈ Z𝑚
𝑞
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∙ tPE.FinDec({𝑝𝑖}) → 𝜇: Given a set of partial decryptions {𝑝𝑖}, we first find a

set of partial decryptions that are part of the access structure. For such subset

of 𝑝𝑖, define

𝜂 = 𝛽1 −
∑︁
𝑖

𝑝𝑖

If the first 𝑚− 1 terms in the vector 𝜂 satisfy |𝜂[𝑖]| < 𝑞/4, then output 𝜇 = 0 if

|𝜂[𝑚]| < 𝑞/4, and 𝜇 = 1 otherwise.

We now show correctness and security of the scheme. The correctness of the

threshold predicate encryption scheme lies in the noise analysis when decrypting.

The security of the scheme can be constructed via a series of hybrid arguments.

Correctness. The correctness of setup, key generation and encryption is preserved

from the predicate encryption scheme of [GVW15]. We now only need to show that

the partial decryption and final decryption algorithms preserve the correctness of

the decryption of the ciphertext. Given a ciphertext 𝑐𝑡, and partial decryptions 𝑝𝑖

corresponding to the ciphertext 𝑐𝑡, in the final decryption we see that

𝜂 = 𝛽1 −
∑︁
𝑖

𝑝𝑖

= 𝛽1 −
∑︁
𝑖

(︁
𝑅(𝑖) ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ + 𝑒(𝑖)
)︁

= 𝛽1 −𝑅 ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ + 𝑒′

where 𝑒′ =
∑︀

𝑖 𝑒
(𝑖). We see that as long as 𝑒′ remains small, then correctness is

maintained by the folklore secret sharing scheme, in which the reconstruction coeffi-

cient is binary.

Security The security of the scheme can be shown via a series of hybrid arguments.

Assume there exists a set of {𝑝𝑖} shares that do not form an authorized set. We wish to
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show that no adversary can learn any information about the underlying encryption

from the partial shares, and no adversary learns information about the secret key

shares either.

∙ Hybrid 0 The original threshold predicate encryption scheme

∙ Hybrid 1 Same as the previous hybrid, except the partial decryptions are

sampled uniformly at random.

∙ Hybrid 2 Same as the previous hybrid, except the secret key shares are gener-

ated with respect to a 0 matrix.

∙ Hybrid 3 Same as the previous hybrid, except the encryption is of a message

𝜇 = 0

∙ Hybrid 4 Same as the previous hybrid, except the encryption consists of at-

tributes 𝑥 = [0, . . . 0]

Hybrid 0 and hybrid 1 are computationally indistinguishable due to the LWE

assumption of the partial decryptions. In other words, let 𝑝(𝑖) = 𝑅(𝑖) ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ in

Hybrid 0 be defined in the partial decryption algorithm, and let 𝑢(𝑖) ← Z𝑚
𝑞 in Hybrid

1. By LWE, we see

(︁⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ , 𝑅(𝑖) ·

⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ + 𝑒(𝑖)
)︁
≈𝑐

(︁⎡⎣ 𝛽0

𝑢𝐶∘IP

⎤⎦ , 𝑢(𝑖)
)︁

Hybrid 1 and Hybrid 2 are statistically indistinguishable from the information the-

oretic security of the folklore secret sharing scheme. Due to having an unauthorized

set of partial decryptions, the distribution of 𝑝𝑖 shares are statistically indistinguish-

able from if the secret key shares were shares of 0.

Hybrid 2 and Hybrid 3 are computationally indistinguishable, due to the semantic

security of the underlying encryption scheme. Since both the secret key shares and the

partial decryptions are simulated, and the underlying FHE scheme is computationally
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indistinguishable, the adversary cannot distinguish between an encryption of 0 and

an encryption of 1.

Similarly, Hybrid 3 and Hybrid 4 are computationally indistinguishable by the

semantic security of the predicate encryption scheme.

5.4 Decentralized Predicate Encryption

In this section, we show how to thresholdize the Setup,KeyGen protocols such that

they can be computed in a decentralized manner. Using [BKP13] to generate thresh-

old constructions of the lattice algorithms TrapGen, SampleRight, SampleD we can dis-

tribute the Key Generation and Setup algorithms. This way, instead of having a

central party own the master secret key and be in charge of key generation, we can

split the master secret key into 𝑛 shares where any 𝑡 parties outputting partial se-

cret keys will combine to form a 𝑠𝑘𝐶 for some predicate 𝐶. One limitation to this

construction is that in [BKP13] there is a online-offline split, in that for the “of-

fline” computations to occur, preprocessing online phase must occur after a bounded

number of offline computations.
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Chapter 6

Future Directions

In this section, we consider directions for future work.

6.1 Threshold FHE

One direction we are currently working on is seeing how threshold FHE can guarantee

correctness in a malicious setting, where parties are no longer semi-honest and are

guaranteed to follow the protocol. Verifiable Secret Sharing can guarantee that the

dealer will share the secret correctly, and the shareholders will also be required to

behave correctly. Fully homomorphic signatures and zero knowledge proofs with

preprocessing (PZK) are also potential techniques that we can use to guarantee that

the decryption process can proceed correctly.

Another extension for the threshold multi FHE scheme would be to look at whether

it is possible to extend it to the multi hop scheme. One shortcoming of the multi-key

FHE scheme provided in [MW16] is that the expand operation can only be done on

freshly encrypted ciphertexts. Once an expanded ciphertext has been evaluated on,

the encryptions of the noise 𝒰 are no longer useful for expanding the cipher text.

In other words, if some parties encrypt their plaintext into ciphertexts encrypted

under their own key, and then expand the ciphertext to perform evaluations on the

expanded ciphertext, it is not possible for another party to then encrypt plaintext

under his own secret key to augment the expanded ciphertext in evaluations. The
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multi-hop multi-key FHE paradigm resolves this shortcoming [BP16, PS16], and it

would be interesting to see how to provide a threshold decryption function to this

protocol.

6.2 Homomorphic Secret Sharing

Homomorphic secret sharing [BGI15, BCG+18] is a natural extension of secret shar-

ing, in which addition and multiplication operations on the individual shares pre-

serve the underlying structure of the data. In other words, the following computation

should be satisfied. If a set of dealers with secrets 𝑠, 𝑡, . . . distributes secrets to

𝑠𝑖, 𝑡𝑖, . . . to party 𝑖, an individual party may compute a functions on his own shares

𝑦𝑖 = 𝑓(𝑠𝑖, 𝑡𝑖, . . . ) such that the reconstruction phase with the evaluated 𝑦𝑖 shares

should reconstruct 𝑦. While HSS can be constructed from LWE based assumptions,

it would be interesting to see whether multi-party HSS can be constructed from weaker

assumptions.

We can build a multi-party hss scheme using a 2 round MPC in which we share

the universal circuit.

6.3 Conclusion

Finally, I would like to thank my advisor, Prof. Yael Kalai, and Adam Sealfon for

their help throughout the year.
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